skip to main content


Title: Ongoing bedrock incision of the Fortymile River driven by Pliocene–Pleistocene Yukon River capture, eastern Alaska, USA, and Yukon, Canada
Award ID(s):
1735676
NSF-PAR ID:
10492007
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geology
Date Published:
Journal Name:
Geology
Volume:
46
Issue:
7
ISSN:
0091-7613
Page Range / eLocation ID:
635 to 638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tundra environments in Alaska are experiencing elevated levels of wildfire, and the frequency is expected to keep increasing due to rapid warming of the Arctic. Because of large amounts of carbon stored in permafrost soils, tundra wildfires may release significant amounts of carbon to the atmosphere that ultimately influence the Earth’s radiative balance. Therefore, accounting for the amount of carbon released from tundra wildfires is important for understanding the trajectory of climate change. We collected data in the Yukon-Kuskokwim River Delta during the summer of 2019 for the purpose of determining organic matter and carbon lost during the 2015 fire season. Organic matter and carbon lost from combustion were determined by combining burn depth measurements with organic matter and carbon content measurements from unburned tundra. Burn depth measurements were taken opportunistically across different levels of burn severity. Three vegetative markers, Sphagnum fuscum, Eriophorum, and Dicranum spp., that survived the fire event were used to measure the difference between the pre and post fire soil height in unburned and burned areas respectively, defined here as burn depth. All burn depth measurements are accompanied with coordinate locations so that they can ground truth and be upscaled by remote sensing data of burn severity. Organic matter and carbon content of the dense live vegetation layer and fibric soil layer were measured in the lab from vegetation and soil cores taken from four different sites in unburned tundra areas. 
    more » « less
  2. null (Ed.)
  3. Cambrian–Devonian sedimentary rocks of the northern Canadian Cordillera record both the establishment and demise of the Great American Carbonate Bank, a widespread carbonate platform system that fringed the ancestral continental margins of North America (Laurentia). Here, we present a new examination of the deep-water Road River Group of the Richardson Mountains, Yukon, Canada, which was deposited in an intra-platformal embayment or seaway within the Great American Carbonate Bank called the Richardson trough. Eleven detailed stratigraphic sections through the Road River Group along the upper canyon of the Peel River are compiled and integrated with geological mapping, facies analysis, carbonate and organic carbon isotope chemostratigraphy, and new biostratigraphic results to formalize four new formations within the type area of the Richardson Mountains (Cronin, Mount Hare, Tetlit, and Vittrekwa). We recognize nine mixed carbonate and siliciclastic deep-water facies associations in the Road River Group and propose these strata were deposited in basin-floor to slope environments. New biostratigraphic data suggest the Road River Group spans the late Cambrian (Furongian) – Middle Devonian (Eifelian), and new chemostratigraphic data record multiple global carbon isotopic events, including the late Cambrian Steptoean positive carbon isotope excursion, the Late Ordovician Guttenberg excursion, the Silurian Aeronian, Valgu, Mulde (mid-Homerian), Ireviken (early Sheinwoodian), and Lau excursions, and the Early Devonian Klonk excursion. Together, these new data not only help clarify nomenclatural debate centered around the Road River Group, but also provide critical new sedimentological, biostratigraphic, and isotopic data for these widely distributed rocks of the northern Canadian Cordillera. 
    more » « less
  4. Abstract. Tundra environments are experiencing elevated levels of wildfire, and thefrequency is expected to keep increasing due to rapid climate change in theArctic. Tundra wildfires can release globally significant amounts ofgreenhouse gasses that influence the Earth's radiative balance. Here wedevelop a novel method for estimating carbon loss and the resultingradiative forcings of gaseous and aerosol emissions from the 2015 tundrawildfires in the Yukon–Kuskokwim Delta (YKD), Alaska. We paired burn depthmeasurements using two vegetative reference points that survived the fireevent – Sphagnum fuscum and Dicranum spp. – with measurements of local organic matter and soil carbonproperties to estimate total ecosystem organic matter and carbon loss. Weused remotely sensed data on fire severity from Landsat 8 to scale ourmeasured losses to the entire fire-affected area, with an estimated totalloss of 2.04 Tg of organic matter and 0.91 Tg of carbon and an average lossof 3.76 kg m−2 of organic matter and 1.68 kg m−2 of carbon in the2015 YKD wildfires. To demonstrate the impact of these fires on the Earth'sradiation budget, we developed a simple but comprehensive framework toestimate the radiative forcing from Arctic wildfires. We synthesizedexisting research on the lifetime and radiative forcings of gaseous andaerosol emissions of CO2, N2O, CH4, O3 and itsprecursors, and fire aerosols. The model shows a net positive cumulativemean radiative forcing of 3.67 W m−2 using representative concentration pathway (RCP) 4.5 and 3.37 W m−2using RCP 8.5 at 80 years post-fire, which was dominated by CO2emissions. Our results highlight the climate impact of tundra wildfires,which positively reinforce climate warming and increased fire frequencythrough the radiative forcings of their gaseous emissions. 
    more » « less
  5. River watersheds are among the most complex terrestrial features in Alaska, performing valuable ecosystem functions and providing services for human society. Rivers are vital to both estuarine and aquatic biota and play important roles in biogeochemical cycles and physical processes. The functions of watersheds have been used as vulnerability indicators for ecosystem and socioeconomic resilience. Despite a long history of human activity, the Yukon River has not received the holistic and interdisciplinary attention given to the other great American river systems. By using hypothesis-based monitoring of key watershed functions, we can gain insight to regime-shifting stresses such as fire, toxins, and invasive species development. Coupling adaptive risk management practices involving stakeholders with place-based education, especially contaminants and nutrition related, can maintain resilience within communities. The Yukon watershed provides a broadscale opportunity for communities to monitor the environment, manage resources, and contribute to stewardship policy formation. Monitoring keystone species and community activities, such as citizen science, are critical first steps to following changes to resiliency throughout the Yukon watershed. Creating a policy environment that encourages local experimentation and innovation contributes to resilience maintenance during development-imposed stress. 
    more » « less