skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying river migration rates in the Yukon River Watershed from optical satellite imagery, Alaska, 2016-2022
This dataset describes measurements of river migration rates (averaged over the period 2016-2022) in three locations within the Yukon River Watershed: Huslia, Alaska (AK) (65.700 N, 156.387 W), Beaver, AK (66.362 N, 147.398 W), and Alakanuk, AK (62.685 N, 164.644 W). Huslia is located on the Koyukuk River and Beaver and Alakanuk are located on the Yukon River. The river migration rates are quantified from sub-pixel correlation of optical satellite imagery (Sentinel-2 imagery, 10 meter (m) spatial resolution), following the methodology of Geyman et al. (2024). The methodology allows for the detection of riverbank erosion at scales approximately 5-10 times smaller than the pixel size, so the detection threshold is 1-2 m over the approximately 7-year interval, corresponding to a migration rate of 0.1 to 0.3 m/year. The motion of the eroding and accreting sides of the river are quantified separately. The river migration rate datasets are made available as georeferenced shapefiles.  more » « less
Award ID(s):
2127444 2127442 2031532
PAR ID:
10521767
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes field measurements of above-ground biomass made between May and October, 2023 in three locations within the Yukon River Watershed: Huslia, Alaska(AK) (65.700 N, 156.387W), Beaver, AK (66.362 N, 147.398W), and Alakanuk, AK (62.685N, 164.644W). We measured a total of 11,335 trees, distributed in 190 field plots (approximately 10 meter (m) x 10 m). We apply allometric scaling relations to convert measurements of tree diameter to kilograms of dry biomass. We then link these filed measurements of above-ground biomass density to the mean forest canopy height (MCH), derived from airborne Light Detection and Ranging (LiDAR) data. We derive empirical regressions linking MCH to above-ground biomass in each of the field sites, and then apply these empirical relationships to the LiDAR datasets to obtain maps of above-ground biomass density. This dataset includes both the field observations (coordinates, tree type, and tree diameter of the 11,335 inventoried trees) and the processed above-ground biomass maps (georeferenced TIFF files, with a spatial resolution of 10 m). 
    more » « less
  2. Due to atmospheric circulation and preservation of organic matter, large amounts of mercury (Hg) are stored in permafrost regions. Due to rapid warming and thawing permafrost in the Arctic, this Hg may be released, potentially degrading water quality and impacting human health. River bank erosion in particular has the ability to quickly mobilize large amounts of Hg-rich floodplain sediments. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin: Beaver, Alaska (AK) (65.700 N, 156.387 W) and Huslia, AK (66.362N, 147.398 W). This dataset contains mercury contents for collected floodplain sediments measured by direct thermal decomposition. Sample metadata also includes information recorded in the field (location, visual grain size description, and sample collection depth) and collected post sample processing (water content and dry density). 
    more » « less
  3. This document describes geomorphic relative age mapping and radiocarbon (14C) measurements used to construct floodplain age models for three locations within the Yukon River Watershed: Huslia, Alaska (65.700 N, 156.387 W), Alakanuk, Alaska (62.685 N, 164.644 W), and Beaver, Alaska (66.362 N, 147.398 W). We describe the field sampling protocols, geomorphic mapping of cross-cutting relationships (aided by digital elevation models (DEMs) and high-resolution satellite imagery), 14C and optically stimulated luminescence (OSL) lab analyses, Markov Chain Monte Carlo (MCMC) interpolation through the geomorphic–radiogenic age constraints, and the resulting floodplain terrain age models. 
    more » « less
  4. Abstract Rapid warming in the Arctic threatens to destabilize mercury (Hg) deposits contained within soils in permafrost regions. Yet current estimates of the amount of Hg in permafrost vary by ∼4 times. Moreover, how Hg will be released to the environment as permafrost thaws remains poorly known, despite threats to water quality, human health, and the environment. Here we present new measurements of total mercury (THg) contents in discontinuous permafrost in the Yukon River Basin in Alaska. We collected riverbank and floodplain sediments from exposed banks and bars near the villages of Huslia and Beaver. Median THg contents were 49+13/−21ng THg g sediment−1and 39+16/−18ng THg g sediment−1for Huslia and Beaver, respectively (uncertainties as 15th and 85th percentiles). Corresponding THg:organic carbon ratios were 5.4+2.0/−2.4Gg THg Pg C−1and 4.2+2.4/−2.9Gg THg Pg C−1. To constrain floodplain THg stocks, we combined measured THg contents with floodplain stratigraphy. Trends of THg increasing with smaller sediment size and calculated stocks in the upper 1 m and 3 m are similar to those suggested for this region by prior pan-Arctic studies. We combined THg stocks and river migration rates derived from remote sensing to estimate particulate THg erosional and depositional fluxes as river channels migrate across the floodplain. Results show similar fluxes within uncertainty into the river from erosion at both sites (95+12/−47kg THg yr−1and 26+154/−13kg THg yr−1at Huslia and Beaver, respectively), but different fluxes out of the river via deposition in aggrading bars (60+40/−29kg THg yr−1and 10+5.3/−1.7kg THg yr−1). Thus, a significant amount of THg is liberated from permafrost during bank erosion, while a variable but generally lesser portion is subsequently redeposited by migrating rivers. 
    more » « less
  5. The carbon stored in permafrost deposits represents the single largest soil carbon reservoir on Earth. Concerns about the instability and dynamics of this carbon reservoir during permafrost thaw associated with polar amplification of climate warming contribute a large part of the uncertainty in forecasting future climate. We have been studying the carbon dynamics of permafrost deposits contained in the floodplains of large Arctic rivers. Across Arctic floodplains, accelerating bank erosion can liberate permafrost organic carbon (OC) as carbon dioxide (CO2) or methane (CH4), and/or redeposit it in fluvial units. These different fates have very different implications for climate feedback. Determining OC stocks and their dynamics in Arctic floodplain cutbanks and point bars, as well as the OC load in fluvial transport, is essential to better understand the recycling and export of permafrost carbon. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin in Alaska: Beaver (65.700° North (N), 156.387° West (W)) and Huslia (66.362° N, 147.398° W). This dataset mainly reports OC contents for collected subsurface sediments in floodplains measured by elemental analyzer. The coupled mercury content can be found in Isabel et al., 2024 (https://doi.org/10.18739/A2RF5KH5J). 
    more » « less