Pain is known to disrupt sleep patterns, and disturbances in sleep can further worsen pain symptoms. Sleep spindles occur during slow wave sleep and have established effects on sensory and affective processing in mammals. A number of chronic neuropsychiatric conditions, meanwhile, are known to alter sleep spindle density. The effect of persistent pain on sleep spindle waves, however, remains unknown, and studies of sleep spindles are challenging due to long period of monitoring and data analysis. Utilizing automated sleep spindle detection algorithms built on deep learning, we can monitor the effect of pain states on sleep spindle activity. In this study, we show that in a chronic pain model in rodents, there is a significant decrease in sleep spindle activity compared to controls. Meanwhile, methods to restore sleep spindles are associated with decreased pain symptoms. These results suggest that sleep spindle density correlates with chronic pain and may be both a potential biomarker for chronic pain and a target for neuromodulation therapy.
more »
« less
Novel approach to modeling high-frequency activity data to assess therapeutic effects of analgesics in chronic pain conditions
Abstract Osteoarthritis (OA) is a chronic condition often associated with pain, affecting approximately fourteen percent of the population, and increasing in prevalence. A globally aging population have made treating OA-associated pain as well as maintaining mobility and activity a public health priority. OA affects all mammals, and the use of spontaneous animal models is one promising approach for improving translational pain research and the development of effective treatment strategies. Accelerometers are a common tool for collecting high-frequency activity data on animals to study the effects of treatment on pain related activity patterns. There has recently been increasing interest in their use to understand treatment effects in human pain conditions. However, activity patterns vary widely across subjects; furthermore, the effects of treatment may manifest in higher or lower activity counts or in subtler ways like changes in the frequency of certain types of activities. We use a zero inflated Poisson hidden semi-Markov model to characterize activity patterns and subsequently derive estimators of the treatment effect in terms of changes in activity levels or frequency of activity type. We demonstrate the application of our model, and its advance over traditional analysis methods, using data from a naturally occurring feline OA-associated pain model.
more »
« less
- Award ID(s):
- 2136034
- PAR ID:
- 10492032
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ocean acidification (OA) is predicted to enhance photosynthesis in many marine taxa. However, photophysiology has multiple components that OA may affect differently, especially under different light environments, with potentially contrasting consequences for photosynthetic performance. Furthermore, because photosynthesis affects energetic budgets and internal acid-base dynamics, changes in it due to OA or light could mediate the sensitivity of other biological processes to OA (e.g. respiration and calcification). To better understand these effects, we conducted experiments onPorolithon onkodes, a common crustose coralline alga in Pacific coral reefs, crossing pCO2and light treatments. Results indicate OA inhibited some aspects of photophysiology (maximum photochemical efficiency), facilitated others (α, the responsiveness of photosynthesis to sub-saturating light), and had no effect on others (maximum gross photosynthesis), with the first two effects depending on treatment light level. Light also exacerbated the increase in dark-adapted respiration under OA, but did not alter the decline in calcification. Light-adapted respiration did not respond to OA, potentially due to indirect effects of photosynthesis. Combined, results indicate OA will interact with light to alter energetic budgets and potentially resource allocation among photosynthetic processes inP. onkodes, likely shifting its light tolerance, and constraining it to a narrower range of light environments.more » « less
-
Phenylpropanoid-enriched broccoli seedling extract can reduce inflammatory markers and pain behaviorAbstract BackgroundPain is a worldwide problem requiring an effective, affordable, non-addictive therapy. Using the edible plant broccoli, a growth protocol was developed to induce a concentrated combinatorial of potential anti-inflammatories in seedlings. MethodsA growth method was utilized to produce a phenylpropanoid-rich broccoli sprout extract, referred to as Original Extract (OE). OE was concentrated and then resuspended for study of the effects on inflammation events. A rabbit disc model of inflammation and degeneration, and, a mouse model of pain behavior were used for in vivo and in vitro tests. To address aspects of mammalian metabolic processing, the OE was treated with the S9 liver microsome fraction derived from mouse, for use in a mouse in vivo study. Analytical chemistry was performed to identify major chemical species. Continuous variables were analyzed with a number of methods including ANOVA, and two-tailedttests, as appropriate. ResultsIn a rabbit spine (disc) injury model, inflammatory markers were reduced, and levels of regenerative markers were increased as a result of OE treatment, both in vivo and in vitro. In a mouse pain behavioral model, after treatment with S9 liver microsome fraction, the resultant extract significantly reduced early and late pain behavior in response to a pain stimulus. The OE itself reduced pain behavior in the mouse pain model, but did not achieve the level of significance observed for S9-treated extract. Analytical chemistry undertaken on the extract constituents revealed identities of the chemical species in OE, and how S9 liver microsome fraction treatment altered species identities and proportions. ConclusionsIn vitro and in vivo results indicate that the OE, and S9-treated OE broccoli extracts are worthwhile materials to develop a non-opiate inflammation and pain-reducing treatment.more » « less
-
Ocean acidification (OA) is negatively affecting calcification in a wide variety of marine organisms. These effects are acute for many tropical scleractinian corals under short-term experimental conditions, but it is unclear how these effects interact with ecological processes, such as competition for space, to impact coral communities over multiple years. This study sought to test the use of individual-based models (IBMs) as a tool to scale up the effects of OA recorded in short-term studies to community-scale impacts, combining data from field surveys and mesocosm experiments to parameterize an IBM of coral community recovery on the fore reef of Moorea, French Polynesia. Focusing on the dominant coral genera from the fore reef, Pocillopora , Acropora , Montipora and Porites , model efficacy first was evaluated through the comparison of simulated and empirical dynamics from 2010–2016, when the reef was recovering from sequential acute disturbances (a crown-of-thorns seastar outbreak followed by a cyclone) that reduced coral cover to ~0% by 2010. The model then was used to evaluate how the effects of OA (1,100–1,200 µatm pCO 2 ) on coral growth and competition among corals affected recovery rates (as assessed by changes in % cover y −1 ) of each coral population between 2010–2016. The model indicated that recovery rates for the fore reef community was halved by OA over 7 years, with cover increasing at 11% y −1 under ambient conditions and 4.8% y −1 under OA conditions. However, when OA was implemented to affect coral growth and not competition among corals, coral community recovery increased to 7.2% y −1 , highlighting mechanisms other than growth suppression (i.e., competition), through which OA can impact recovery. Our study reveals the potential for IBMs to assess the impacts of OA on coral communities at temporal and spatial scales beyond the capabilities of experimental studies, but this potential will not be realized unless empirical analyses address a wider variety of response variables representing ecological, physiological and functional domains.more » « less
-
Abstract BackgroundRoughly a quarter of the US population suffers from moderate to severe chronic pain for at least six months in any given year. The complexity of managing chronic pain has encouraged providers to use innovative methods to address it. Research has shown that problem lists are potential tools that support the care of patients with diabetes and chronic kidney disease. ObjectivesTo examine the extent to which the inclusion of chronic pain in a problem list is associated with follow-up specialty pain care. MethodsThe association between chronic pain documentation on the problem list and specialty pain care was investigated in this retrospective cohort study using 4531 patient records. ResultsChronic pain documentation in the problem list was associated with higher odds of receiving specialty pain care. The most common diagnosis was chronic pain (69.7%). A migraine diagnosis was associated with decreased odds of receiving specialty care, and chronic pain syndrome was associated with increased odds of receiving specialty care compared with the other chronic pain groups. ConclusionDocumenting chronic pain on the problem list was associated with a higher likelihood of patients receiving specialty pain care.more » « less
An official website of the United States government

