skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low sodium availability in hydroponically manipulated host plants promotes cannibalism in a lepidopteran herbivore
Abstract As an abundant element in the Earth’s crust, sodium plays an unusual role in food webs. Its availability in terrestrial environments is highly variable, but it is nonessential for most plants, yet essential for animals and most decomposers. Accordingly, sodium requirements are important drivers of various animal behavioural patterns and performance levels. To specifically test whether sodium limitation increases cannibalism in a gregarious lepidopteran herbivore, we hydroponically manipulatedHelianthus annuushost plants' tissue-sodium concentrations. Gregarious larvae of the bordered patch butterfly,Chlosyne lacinia, cannibalized siblings when plant-tissue sodium concentrations were low in two separate experiments. Although cannibalism was almost non-existent when sodium concentrations were high, individual mortality rates were also high. Sodium concentration in host plants can have pronounced effects on herbivore behaviour, individual-level performance, and population demographics, all of which are important for understanding the ecology and evolution of plant-animal interactions across a heterogeneous phytochemical landscape.  more » « less
Award ID(s):
2208922
PAR ID:
10492141
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Portfolio
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dietary generalist herbivorous insects are widespread and often occur in a variety of environments. Across their geographic range, herbivorous insects may encounter variable plant traits as they feed on high‐quality or low‐quality plants. Herbivorous insect larvae experience both bottom‐up (host plant) and top‐down (parasitoid) factors that affect survival. Host plant quality may affect larval growth and survival in that larvae feeding on low‐quality plants often suffer reduced fitness. However, herbivores on different host plants are also subject to different levels of parasitism. High‐quality plants confer stronger larval performance (higher survival, more offspring), but larvae may also face higher parasitism. In some herbivore species, diet mediates larval immune response. The generalist insect herbivore fall webworm (FW),Hyphantria cuneaDrury (Lepidoptera: Erebidae), is a moth native to North America, and its larvae have considerable variance in their performance when reared on different host plants. We investigated whether diet affects the immune response in FW larvae when they are reared on different host plant species known to vary in food quality. We measured immune response by melanization of a nylon filament. We found significant differences in immune response across host plants, indicating that diet mediates immune response in FW larvae. Our study helps elucidate the factors that cause variation in immune response in a generalist herbivore. 
    more » « less
  2. Abstract As an essential micronutrient for many organisms, sodium plays an important role in ecological and evolutionary dynamics. Although plants mediate trophic fluxes of sodium, from substrates to higher trophic levels, relatively little comparative research has been published about plant growth and sodium accumulation in response to variation in substrate sodium. Accordingly, we carried out a systematic review of plants' responses to variation in substrate sodium concentrations.We compared biomass and tissue‐sodium accumulation among 107 cultivars or populations (67 species in 20 plant families), broadly expanding beyond the agricultural and model taxa for which several generalizations previously had been made. We hypothesized a priori response models for each population's growth and sodium accumulation as a function of increasing substrate NaCl and used Bayesian Information Criterion to choose the best model. Additionally, using a phylogenetic signal analysis, we tested for phylogenetic patterning of responses across taxa.The influence of substrate sodium on growth differed across taxa, with most populations experiencing detrimental effects at high concentrations. Irrespective of growth responses, tissue sodium concentrations for most taxa increased as sodium concentration in the substrate increased. We found no strong associations between the type of growth response and the type of sodium accumulation response across taxa. Although experiments often fail to test plants across a sufficiently broad range of substrate salinities, non‐crop species tended toward higher sodium tolerance than domesticated species. Moreover, some phylogenetic conservatism was apparent, in that evolutionary history helped predict the distribution of total‐plant growth responses across the phylogeny, but not sodium accumulation responses.Our study reveals that saltier plants in saltier soils proves to be a broadly general pattern for sodium across plant taxa. Regardless of growth responses, sodium accumulation mostly followed an increasing trend as substrate sodium levels increased. 
    more » « less
  3. Abstract Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly,Euphydryas phaeton(Nymphalidae), have recently incorporated an exotic plant,Plantago lanceolata(Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus,Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field‐collected caterpillars using eitherP.lanceolataor a native plant,Chelone glabra(Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the “vulnerable host” hypothesis) from a field‐based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus‐infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies. 
    more » « less
  4. Abstract Sodium is essential for animals, and its heterogeneous distribution can cause a range of phenomena, from sodium‐seeking behaviours to impacting their performance. Although sodium content in soils and plants is relatively well documented, data for higher trophic levels are limited. Knowledge of the variation in sodium in lower trophic levels could have implications for understanding the behaviour and physiology of species at higher levels.We investigated the variation in tissue sodium concentration between males and females of four butterfly species. Puddling behaviour of Lepidoptera suggests sodium needs of males are generally greater than females, thus, we predicted males would accumulate more sodium than females on a given diet.Larvae were reared on plants (forBattus philenor,Chlosyne laciniaandDanaus plexippus) and an artificial diet (forPieris rapae) under Low Na (no added sodium) and High Na (sodium added) conditions. Among species and sexes, we quantified and compared adult absolute tissue sodium concentrations and bioconcentration factors, which indicate net sodium accumulation or excretion relative to individuals' diets.On average, individuals on low‐sodium diets had higher bioconcentration values across all species. Male butterflies accumulated significantly higher sodium concentrations than females in two sodium treatments forB. philenor, andP. rapaeand only in the High Na treatment forC. lacinia. However, inD. plexippus, individuals accumulate sodium in the High Na treatment, but males and females responded in the same way.Our study revealed sex‐ and species‐specific patterns of butterfly sodium accumulation, which could be linked to variations in behaviour and/or performance. Differences in sodium content across species have implications for variation in predation and trophic‐level interactions, an interesting avenue for future ecological and evolutionary research. 
    more » « less
  5. Abstract PremisePolyploidy is a widespread mutational process in angiosperms that may alter population performance of not only plants but also their interacting species. Yet, knowledge of whether polyploidy affects plant–herbivore dynamics is scarce. Here, we tested whether aphid herbivores exhibit preference for diploid or neopolyploid plants, whether polyploidy impacts plant and herbivore performance, and whether these interactions depend on the plant genetic background. MethodsUsing independently synthesized neotetraploid strains paired with their diploid progenitors of greater duckweed (Spirodela polyrhiza), we evaluated the effect of neopolyploidy on duckweed's interaction with the water‐lily aphid (Rhopalosiphum nymphaeae). Using paired‐choice experiments, we evaluated feeding preference of the herbivore. We then evaluated the consequences of polyploidy on aphid and plant performance by measuring population growth over multiple generations. ResultsAphids preferred neopolyploids when plants were provided at equal abundances but not at equal surface areas, suggesting the role of plant population surface area in driving this preference. Additionally, neopolyploidy increased aphid population performance, but this result was dependent on the plant's genetic lineage. Lastly, the impact of herbivory on neopolyploid vs. diploid duckweed varied greatly with genetic lineage, where neopolyploids appeared to be variably tolerant compared to diploids, sometimes mirroring the effect on herbivore performance. ConclusionsBy experimentally testing the impacts of polyploidy on trophic species interactions, we showed that polyploidization can impact the preference and performance of herbivores on their plant hosts. These results have significant implications for the establishment and persistence of plants and herbivores in the face of plant polyploidy. 
    more » « less