skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simulated Methane and Nitrous Oxide Emissions under Drought-induced Saltwater Intrusion in Tidal Freshwater Forested Wetlands
This dataset contains the result of simulated daily emissions of methane (CH4) and nitrous oxide (N2O) from the soils in Tidal Freshwater Forested Wetlands (TFFW) along the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) under drought-induced saltwater intrusion using a process-driven biogeochemistry model.  more » « less
Award ID(s):
1754603
PAR ID:
10398853
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
U.S. Geological Survey
Date Published:
Subject(s) / Keyword(s):
Ecology, Forestry, Hydrology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Decisions related to the production of lithic technology involve landscape-scale patterns of resource acquisition and transport that are not observable in assemblages from any one single site. In this study, we describe the stone artifacts from a discrete cluster of stone artifacts assigned to the Robberg technocomplex (22-16 ka) at the open-air locality of Uitspankraal 9 (UPK9), which is located near two major sources of toolstone in the Doring River catchment of Western Cape, South Africa.OSLdating of the underlying sediment unit provides aterminus post quemage of 27.5 ± 2.1 ka for the assemblage. Comparison of near-source artifact reduction atUPK9 with data from three rock shelter assemblages within the Doring watershed – Putslaagte 8 (PL8), Klipfonteinrand Rock Shelter (KFR), and Mertenhof Rock Shelter (MRS) – suggests that “gearing-up” with cores and blanks occurred along the river in anticipation of transport into the wider catchment area. The results reveal an integrated system of technological supply in which raw materials from different sources were acquired, reduced, and transported in different ways throughout the Doring River region. 
    more » « less
  2. Abstract Rising chloride concentrations pose critical risks to freshwater stream ecosystems in temperate regions like the Delaware River Basin (DRB), USA, where winter deicer applications (i.e., road salt) are common. Increasing chloride concentrations have been documented in the region, but the extent to which chloride exceeds regulatory benchmarks remains unclear because detection of exceedances requires continuous monitoring of chloride (i.e., hourly or daily). A network of 82 non-tidal continuous specific conductance (SC) monitoring sites, spanning varied land use and geological settings, was established across the DRB to address this research need. First, a cluster analysis was conducted to group sites based on their watershed characteristics. Next, regression models for sites and clusters were developed to predict chloride using SC as a proxy. Finally, daily mean and hourly mean chloride concentration predictions were made for a three-year period (2020–2022) at the 82 study sites and analyzed to determine where and when chloride exceeded federal regulatory benchmarks. Chloride exceedance events occurred at 35% of the sites, all of which had 5% impervious cover or greater. Seasonally elevated chloride also was predicted at sites with less than 5% impervious cover. Variability in chloride patterns likely was influenced by deicer material types, winter weather patterns, geological settings, and gaps in data coverage. This study demonstrated the value of SC as a proxy for predicting chloride concentrations and showed how SC-chloride regression relationships vary across settings. More broadly, this study highlighted the value of continuous water quality monitoring to assess effects of freshwater salinization at a regional scale. 
    more » « less
  3. Integrated hydrological and hydrodynamic modeling study has been conducted to investigate hurricane impact on Woonasquatucket River, Rhode Island, USA. Model simulation was conducted for the case study of 2010 storm event. The hydrological model simulates the runoff from the heavy rainstorm, while the river hydrodynamic model simulates the flood waves affected by the interactions of upstream rainfall runoff and downstream storm surge. Results indicate that the river floods was dominant by rainfall runoff in upper river reaches, but dominant by storm surge in the lower river area near the estuary 
    more » « less
  4. null (Ed.)
    This study determines the relationships between water flow and water quality in three types of channels in southern Florida, USA: Shark River Slough, Peace River, and Hillsboro Canal. Peace River most resembles a natural channel with floodplain connectivity, sinuosity, and uninhibited flow. Shark River Slough has a natural, shallow channel with sheet flow, while the Hillsboro Canal is the most modified channel due to dredging, straightening, and regulated flow. Hydrologic indices for each channel were estimated to characterize flow regimes and flow variability, while concentration–discharge (C–Q) relationships were determined to quantify the impact of flow regime on water quality. The greatest variability in flow occurred at the Hillsboro Canal, followed by Peace River and Shark River Slough. Connectivity to floodplains and long durations of low and high flow pulses at Peace River and Shark River Slough contributed to the dilution of water quality constituent concentrations at higher flows. Conversely, the channelized characteristics of the Hillsboro Canal resulted in an enrichment of constituents, especially during high flows. This study suggests that C–Q relationships can be used in canal discharge management to prevent water quality degradation of sensitive downstream wetland and aquatic ecosystems. 
    more » « less
  5. Abstract The Logan River watershed, located in Northern Utah, USA, consists of a relatively pristine, mountainous area that drains to a lower elevation, valley area influenced by both urban development and agriculture. The Logan River Observatory has been collecting aquatic (streamflow and water quality) and climate data throughout the Logan River watershed since 2014. While streamflow measurements are commonly made at the outlets of research watersheds, the Logan River watershed consists of diverse hydrologic, topographic, and geologic settings that require a detailed understanding of streamflow variability over time at many locations. Here, we illustrate: (a) the importance of collecting streamflow time series throughout complex watersheds, and (b) how simple flow balances can provide much needed hydrologic insight into the locations and timing of gains and losses over reaches to guide future investigations. 
    more » « less