skip to main content


Title: Hybrid HfC‐SiCN matrix for improved oxidation resistance of carbon fiber–reinforced mini‐composites
Abstract

Hafnium carbide (HfC) is an ultrahigh‐temperature ceramic with high melting point, chemical stability, hardness, and wear resistance. However, its low fracture toughness and poor thermal shock resistance limit its structural applications in extreme environments. In this study, co‐curing of liquid precursors was carried out prior to complete pyrolysis of individual polymeric precursors. First, HfC preceramic polymer precursor was cured, followed by silicon carbonitride (SiCN) precursor curing on a 2D carbon fiber (CF) cloth using the drop‐coating process. The infiltrated CFs were pyrolyzed at 800°C to achieve CF/HfC‐SiCN ceramic mini‐composites. The cross‐linked precursor‐to‐ceramic yield was observed to be as high as 65% when the procedure was carried out in an inert environment. Although stable up to 1200°C, CF/HfC‐SiCN samples demonstrated susceptibility to oxidation at 1500°C in ambient air. The oxidation of HfC in the presence of SiC leads to the formation of a hafnium‐containing silicate (HfxSiyOz) along with hafnia (HfO2). This compound of silicate and hafnia limits oxygen diffusion better than SiO2and HfO2individually. The incorporation of SiCN in HfC ceramic led to improved phase stability compared to a neat HfC system. The results of this study also show that the use of liquid‐phase precursors for HfC and SiCN in the polymer‐infiltrated pyrolysis method is a promising approach to fabricating high‐temperature structural ceramic matrix composites with good oxidation resistance.

 
more » « less
NSF-PAR ID:
10492209
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Ceramic Engineering & Science
Volume:
6
Issue:
2
ISSN:
2578-3270
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A liquid‐phase polymer‐to‐ceramic approach is reported for the synthesis of hafnium carbide (HfC)/hafnium oxide (HfO2) composite particles from a commercial precursor. Typically, HfC ceramics have been obtained by sintering of fine powders, which usually results in large particle size and high porosity during densification. In this study a single‐source liquid precursor was first cured at low temperature and then pyrolyzed at varying conditions to achieve HfC ceramics. The chemical structure of the liquid and cured precursors, and the resulting HfC ceramics was studied using various analytical techniques. The nuclear magnetic resonance and Fourier transform infrared spectroscopy indicated the presence of partially hydrated hafnium oxychloride (Hf–O–Cl·nH2O) in the precursor. Scanning electron microscopy of the resulting HfC crystals showed a size distribution in the range of approx. 600–700 nm. The X‐ray diffraction of the pyrolyzed samples confirmed the formation of crystalline HfC along with monoclinic‐HfO2and free carbon phase. The formation of HfO2in the ceramics was significantly reduced by controlling the low‐temperature curing temperature. Pyrolysis at various temperatures showed that HfC formation occurred even at 1000°C. These results show that the reported precursor could be promising for the direct synthesis of ultrahigh temperature HfC ceramics and for precursor infiltration pyrolysis of reinforced ceramic matrix composites.

     
    more » « less
  2. Abstract

    The oxidation behavior of SiC fibers coated with (a) undoped polysilazane and (b) precursors containing a mixture of polysilazane and hafnium butoxide in equal weight fractions, is reported. The coatings were prepared by repetitive cycles of nanolayer depositions, as reported in recent publications. The oxidation experiments were carried out at 1400°C in ambient air (Boulder, CO) for up to 100 hours. The extent of degradation of SiC was measured by the recession in the diameter of the fibers as a function of time. The fibers with undoped polymer precursor recessed significantly, whereas the fibers coated with HfSiCNO remained essentially unchanged. These results are in agreement with earlier work from our laboratory where the resilience of hafnon and zircon, as well as hafnia and zirconia, against high‐temperature corrosion in streaming humid environments had been highlighted.

     
    more » « less
  3. null (Ed.)
    Ceramics derived from organic polymer precursors, which have exceptional mechanical and chemical properties that are stable up to temperatures slightly below 2000 °C, are referred to as polymer-derived ceramics (PDCs). These molecularly designed amorphous ceramics have the same high mechanical and chemical properties as conventional powder-based ceramics, but they also demonstrate improved oxidation resistance and creep resistance and low pyrolysis temperature. Since the early 1970s, PDCs have attracted widespread attention due to their unique microstructures, and the benefits of polymeric precursors for advanced manufacturing techniques. Depending on various doping elements, molecular configurations, and microstructures, PDCs may also be beneficial for electrochemical applications at elevated temperatures that exceed the applicability of other materials. However, the microstructural evolution, or the conversion, segregation, and decomposition of amorphous nanodomain structures, decreases the reliability of PDC products at temperatures above 1400 °C. This review investigates structure-related properties of PDC products at elevated temperatures close to or higher than 1000 °C, including manufacturing production, and challenges of high-temperature PDCs. Analysis and future outlook of high-temperature structural and electrical applications, such as fibers, ceramic matrix composites (CMCs), microelectromechanical systems (MEMSs), and sensors, within high-temperature regimes are also discussed. 
    more » « less
  4. Abstract

    Polymer‐derived amorphous SiCN has excellent high‐temperature stability and properties. To reduce the shrinkage during pyrolysis and to improve the high‐temperature oxidation resistance, Y2O3was added as a filler. In this study, polymer‐derived SiCN–Y2O3composites were fabricated by mixing a polymeric precursor of SiCN with Y2O3submicron powders in different ratios. The mixtures were cross‐linked and pyrolyzed in argon. SiCN–Y2O3composites were processed using field‐assisted sintering technology at 1350°C for 5 min under vacuum. Dense SiCN–Y2O3composite pellets were successfully made with relative density higher than 98% and homogeneous microstructure. Due to low temperature and short time of the heat‐treatment, the grain growth of Y2O3was substantially inhibited. The Y2O3grain size was ∼1 μm after sintering. The composites’ heat capacity, thermal diffusivity, and thermal expansion coefficients were characterized as a function of temperature. The thermal conductivity of the composites ceramics decreased as the amount of amorphous SiCN increased and the coefficient of thermal expansion (CTE) of the composites increased with Y2O3content. However, the thermal conductivity and CTE did not follow the rule of mixture. This is likely due to the partial oxidation of SiCN and the resultant impurity phases such as Y2SiO5, Y2Si2O7, and Y4.67(SiO4)3O.

     
    more » « less
  5. null (Ed.)
    Electrospinning is an emerging technique for synthesizing micron to submicron-sized polymer fibre supports for applications in energy storage, catalysis, filtration, drug delivery and so on. However, fabrication of electrospun ceramic fibre mats for use as a reinforcement phase in ceramic matrix composites or CMCs for aerospace applications remains largely unexplored. This is mainly due to stringent operating requirements that require a combination of properties such as low mass density, high strength, and ultrahigh temperature resistance. Herein we report fabrication of molecular precursor-derived silicon oxycarbide or SiOC fibre mats via electrospinning and pyrolysis of cyclic polysiloxanes-based precursors at significantly lower weight loadings of organic co-spin agent. Ceramic fibre mats, which were free of wrapping, were prepared by a one-step spinning (in air) and post heat-treatment for crosslinking and pyrolysis (in argon at 800 °C). The pyrolyzed fibre mats were revealed to be amorphous and a few microns in diameter. Four siloxane-based pre-ceramic polymers were used to study the influence of precursor molecular structure on the compositional and morphological differences of cross-linked and pyrolyzed products. Further thermal characterization suggested the potential of electrospun ceramic mats in high temperature applications. 
    more » « less