Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films, Nano Lett., 15, 2965 (2015).
more »
« less
Raman spectroscopy of phonon states in NbTe 4 and TaTe 4 quasi‐one‐dimensional van der Waals crystals
Abstract We report the results of polarization‐dependent Raman spectroscopy of phonon states in single‐crystalline quasi‐one‐dimensional NbTe4and TaTe4van der Waals materials. The measurements were conducted in the wide temperature range from 80 to 560 K. Our results show that although both materials have identical crystal structures and symmetries, there is a drastic difference in the intensity of their Raman spectra. While TaTe4exhibits well‐defined peaks through the examined wavenumber and temperature ranges, NbTe4reveals extremely weak Raman signatures. The measured spectral positions of the phonon peaks agree with the phonon band structure calculated using the density‐functional theory. We offer possible reasons for the intensity differences between the two van der Waals materials. Our results provide insights into the phonon properties of NbTe4and TaTe4van der Waals materials and indicate the potential of Raman spectroscopy for studying charge‐density‐wave quantum condensate phases.
more »
« less
- Award ID(s):
- 1921958
- PAR ID:
- 10492223
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Raman Spectroscopy
- Volume:
- 55
- Issue:
- 6
- ISSN:
- 0377-0486
- Format(s):
- Medium: X Size: p. 695-705
- Size(s):
- p. 695-705
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Body: Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films,” Nano Lett., 15, 2965 (2015).more » « less
-
Magnetic excitations in van der Waals (vdW) materials, especially in the two-dimensional (2D) limit, are an exciting research topic from both the fundamental and applied perspectives. Using temperature-dependent, magneto-Raman spectroscopy, we identify the hybridization of two-magnon excitations with two phonons in manganese phosphorus triselenide (MnPSe 3 ), a magnetic vdW material that hosts in-plane antiferromagnetism. Results from first-principles calculations of the phonon and magnon spectra further support our identification. The Raman spectra’s rich temperature dependence through the magnetic transition displays an avoided crossing behavior in the phonons’ frequency and a concurrent decrease in their lifetimes. We construct a model based on the interaction between a discrete level and a continuum that reproduces these observations. Our results imply a strong hybridization between each phonon and a two-magnon continuum. This work demonstrates that the magnon-phonon interactions can be observed directly in Raman scattering and provides deep insight into these interactions in 2D magnetic materials.more » « less
-
Here, we present comprehensive phononic and charge density wave properties (CDW) of rare-earth van der Waals tritellurides through temperature dependent angle-resolved Raman spectroscopy measurements. All the possible rare-earth tritellurides (RTe3) ranging from R = La–Nd, Sm, Gd–Tm were synthesized through a chemical vapor transport technique to achieve high quality crystals with excellent CDW characteristics. Raman spectroscopy studies successfully identify the emergence of the CDW state and transition temperature (TCDW), which offers a non-destructive method to identify their CDW response with micron spatial resolution. Temperature dependent Raman measurements further correlate how the atomic mass of metal cations and the resulting chemical pressure influence its CDW properties and offer detailed insight into the strength of CDW amplitude mode-phonon coupling during the CDW transition. Angle-resolved Raman measurements offer the first insights into the CDW-phonon symmetry interplay by monitoring the change in the symmetry of phonon mode across the CDW transition. Overall results introduce the library of RTe3 CDW materials and establish their characteristics through the non-destructive angle-resolved Raman spectroscopy technique.more » « less
-
Abstract TiSe2is an exciting material because it can be tuned between superconducting and charge density wave (CDW) transitions. In the monolayer limit, TiSe2exhibits a sizable energy gap in the CDW phase that makes it a promising quantum material. It is shown that interfacing a single layer of TiSe2with dissimilar van der Waals materials enables control of its properties. Using angle‐resolved photoemission spectroscopy, the energy gap opening is analyzed as a function of temperature for TiSe2monolayers supported on different van der Waals substrates. A substantial increase in the CDW transition temperature of ≈45 K is observed on MoS2compared to graphite (highly oriented pyrolytic graphite) substrates. This control of the CDW in monolayer TiSe2is suggested to arise from varying charge screening of the unconventional CDW of TiSe2by the substrate. In addition, the suppression of CDW order and a complete closing of the energy gap by electron doping of monolayer TiSe2is demonstrated. Regulating the many‐body physics phenomena in monolayer TiSe2lays the foundation of modifying TiSe2in, for example, artificial van der Waals heterostructures and thus creates a new approach for utilizing the quantum states of TiSe2in device applications.more » « less
An official website of the United States government
