skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The phononic and charge density wave behavior of entire rare-earth tritelluride series with chemical pressure and temperature
Here, we present comprehensive phononic and charge density wave properties (CDW) of rare-earth van der Waals tritellurides through temperature dependent angle-resolved Raman spectroscopy measurements. All the possible rare-earth tritellurides (RTe3) ranging from R = La–Nd, Sm, Gd–Tm were synthesized through a chemical vapor transport technique to achieve high quality crystals with excellent CDW characteristics. Raman spectroscopy studies successfully identify the emergence of the CDW state and transition temperature (TCDW), which offers a non-destructive method to identify their CDW response with micron spatial resolution. Temperature dependent Raman measurements further correlate how the atomic mass of metal cations and the resulting chemical pressure influence its CDW properties and offer detailed insight into the strength of CDW amplitude mode-phonon coupling during the CDW transition. Angle-resolved Raman measurements offer the first insights into the CDW-phonon symmetry interplay by monitoring the change in the symmetry of phonon mode across the CDW transition. Overall results introduce the library of RTe3 CDW materials and establish their characteristics through the non-destructive angle-resolved Raman spectroscopy technique.  more » « less
Award ID(s):
2052527 1933214 2111812
PAR ID:
10594987
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Materials
Volume:
10
Issue:
11
ISSN:
2166-532X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rare-earth tritellurides (RTe 3 ) are a distinct class of 2D layered materials that recently gained significant attention due to hosting such quantum collective phenomena as superconductivity or charge density waves (CDWs). Many members of this van der Waals (vdW) family crystals exhibit CDW behavior at room temperature, i.e. , RTe 3 compound where R = La, Ce, Pr, Nd, Sm, Gd, and Tb. Here, our systematic studies establish the CDW properties of RTe 3 when the vdW spacing/interaction strength between adjacent RTe 3 layers is engineered under extreme hydrostatic pressures. Using a non-destructive spectroscopy technique, pressure-dependent Raman studies first establish the pressure coefficients of phonon and CDW amplitude modes for a variety of RTe 3 materials, including LaTe 3 , CeTe 3 , PrTe 3 , NdTe 3 , SmTe 3 , GdTe 3 , and TbTe 3 . Results further show that the CDW phase is eventually suppressed at high pressures when the interlayer spacing is reduced and interaction strength is increased. Comparison between different RTe 3 materials shows that LaTe 3 with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure) exhibits the most stable CDW phases at high pressures. In contrast, CDW phases in late RTe 3 systems with the largest internal chemical pressures are suppressed easily with applied pressure. Overall results provide comprehensive insights into the CDW response of the entire RTe 3 series under extreme pressures, offering an understanding of CDW formation/engineering in a unique class of vdW RTe 3 material systems. 
    more » « less
  2. Optical excitation of chiral phonons plays a vital role in studying the phonon-driven magnetic phenomena in solids. Transition metal dichalcogenides host chiral phonons at high symmetry points of the Brillouin zone, providing an ideal platform to explore the interplay between chiral phonons and valley degree of freedom. Here, we investigate the helicity-resolved magneto-Raman response of monolayer MoS2 and identify a doubly degenerate Brillouin-zone-center chiral phonon mode at ∼270cm−1. Our wavelength- and temperature-dependent measurements show that this chiral phonon is activated through the resonant excitation of 𝐴 exciton. Under an out-of-plane magnetic field, the chiral phonon exhibits giant Zeeman splitting, which corresponds to an effective magnetic moment of ∼2.5⁢𝜇𝐵. Moreover, we carry out theoretical calculations based on the morphic effects in nonmagnetic crystals, which reproduce the linear Zeeman splitting and Raman cross section of the chiral phonon. Our study provides important insights into lifting the chiral phonon degeneracy in an achiral covalent material, paving a route to excite and control chiral phonons. 
    more » « less
  3. Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films, Nano Lett., 15, 2965 (2015). 
    more » « less
  4. Abstract Body: Recently a new research field of quasi-one-dimensional (1D) van der Waals quantummaterials has emerged from earlier work on low-dimensional systems [1-2]. The quasi-1D van der Waalsmaterials have 1D motifs in their crystal structure [1]. Many of these materials reveal strongly correlatedphenomena such as charge density waves (CDW) [1-2]. The CDW phase is a periodic modulation of theelectronic charge density, accompanied by distortions in the underlying crystal lattice. Potential uses for CDWmaterials include memory storage and oscillators [3]. Raman spectroscopy can identify the CDW transitions todifferent phases via the appearance of phonon peaks due to emerging superstructure or the disappearance ofcertain peaks due to the loss of translation symmetry in the crystal lattice [3]. In this presentation, we report theresults of the angle and temperature-dependent Raman scattering spectroscopy investigation of themechanically exfoliated nanowires of the quasi-1D Nb van der Waals material. It is known that Nb forms in atetragonal crystal structure with space group 124 (P4/mcc). Recently, this material attracted attention as aCDW material with multiple phase transitions, some of them, possibly, near room temperature. Littleinformation is known on the Raman characteristics of this material. Our Raman data for different polarizationangles show strong anisotropy in the response depending on the crystal direction. The most pronouncedRaman peaks reveal strong temperature dependence. The results of the measurements will be compared withthe theoretical predictions. Our data is important for further investigation of this quasi-1D CDW material forpossible applications in phase-change memory and reconfigurable devices. A.A.B. acknowledges the support of the Vannevar Bush Faculty Fellowship (VBFF) from the Office of NavalResearch (ONR) contract N00014-21-1-2947 “One-Dimensional Quantum Materials” and the National ScienceFoundation (NSF) program Designing Materials to Revolutionize and Engineer our Future (DMREF) via aproject DMR-1921958 “Data-Driven Discovery of Synthesis Pathways and Distinguishing ElectronicPhenomena of 1D van der Waals Bonded Solids”. A. D. and S. K. acknowledge support through the MaterialGenome Initiative funding allocated to the National Institute of Standards and Technology. [1] A. A. Balandin, F. Kargar, T. T. Salguero, and R. Lake, “One-dimensional van der Waals quantummaterials", Mater. Today, 55, 74 (2022). [2] A. A. Balandin, R. K. Lake, and T. T. Salguero, "One-dimensional van der Waals materials - Advent of a newresearch field" Appl. Phys. Lett., 121, 040401 (2022). [3] A. A. Balandin, S. V. Zaitzev-Zotov, and G. Grüner, "Charge-density-wave quantum materials and devices—New developments and future prospects", Appl. Phys. Lett., 119, 170401 (2021). [4] R. Samnakay, et al., “Zone-folded phonons and the charge-density-wave transition in 1T-TaSe2 thin films,” Nano Lett., 15, 2965 (2015). 
    more » « less
  5. Recent helicity−resolved magneto−Raman spectroscopy measurement demonstrates large effective phonon magnetic moments of ~2.5 $$\mu_B$$ in monolayer MoS$$_2$$, highlighting resonant excitation of bright excitons as a feasible route to activate $$\Gamma$$−point circularly polarized phonons in transition metal dichalcogenides. However, a microscopic picture of this intriguing phenomenon remains lacking. In this work, we show that an orbital transition between the split conduction bands ($$\Delta_0$$ = 4 meV) of MoS$$_2$$ couples to the doubly degenerate $$E^{′′}$$ phonon mode ($$\Omega_0$$ = 33 meV), forming two hybridized states. Our phononic and electronic Raman scattering measurements capture these two states: (i) one with predominantly phonon contribution in the helicity−switched channels, and (ii) one with primarily orbital contribution in the helicity−conserved channels. An orbital−phonon coupling model successfully reproduces the large effective magnetic moments of the circularly polarized phonons and explains their thermodynamic properties. Strikingly, the Raman mode from the orbital transition is superimposed on a strong quasi−elastic scattering background, indicating the presence of spin fluctuations. As a result, the electrons excited to the conduction bands through the exciton exhibit paramagnetic behavior although MoS$$_2$$ is generally considered as a non-magnetic material. By depositing nanometer−thickness nickel thin films on monolayer MoS$$_2$$, we tune the electronic structure so that the A exciton perfectly overlaps with the 633 nm laser. The optimization of resonance excitation leads to pronounced tunability of the orbital−phonon hybridized states. Our results generalize the orbital−phonon coupling model of effective phonon magnetic moments to material systems beyond the paramagnets and magnets. 
    more » « less