skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aerosol Deposition and Snow Accumulation Processes From Beryllium‐7 Measurements in the Central Arctic Ocean: Results From the MOSAiC Expedition
Abstract We use a tracer method involving the cosmogenic radioisotope beryllium‐7 (half‐life = 53.3 days) to follow the deposition of aerosols and the fate of snow on the MOSAiC ice floe during winter and spring 2019–2020. When examined alongside data from earlier studies in the Arctic Ocean that covered summer and fall, Be‐7 inventories indicate a summertime peak for aerosol Be‐7 deposition fluxes coinciding with seasonal minima boundary‐level aerosol concentrations, which suggests that deposition fluxes are primarily controlled by precipitation. This conclusion is supported by the linear relationship between Be‐7 fluxes and precipitation rates derived from data from the MOSAiC and SHEBA expeditions. Inventories of Be‐7 within the snow column exhibited evidence of significant redistribution. Be‐7 deficits, relative to the flux, were observed in areas of level sea ice while excess Be‐7 was found associated with deformed ice features such as pressure ridges, leading to the following estimates for the distribution of snow on the ice floe in May 2020: 75–93% of the snow mass is found on deformed sea ice with the remainder on level ice. Furthermore, uncertainties associated with measurements of Be‐7 concentrations within the ocean mixed layer would allow for losses of snow through open leads of up to approximately 20% of the flux. Our snow distribution estimates agree with data from repeat snow depth transect measurements. These results suggest that Be‐7 can be a useful tool in studying snow redistribution.  more » « less
Award ID(s):
1753423 1753408 1753418
PAR ID:
10492270
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
2
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition was an international initiative in which research vessel (R/V) Polarstern drifted with the sea ice in the Central Arctic Ocean from October 2019 to September 2020. Here, we present data from a study in which Beryllium-7, a naturally occurring radioactive isotope with a half-life of 53 days, is used as a tracer for the atmospheric deposition of trace elements to the ocean / ice surface and their partitioning among the seawater, ice and snow catchments during winter and spring. The data sets include measurements of Be-7 in 1) aerosol particles collected on filters using a high volume sampler on Polastern, 2) seawater from the upper water column (8-60 meters depth) collected using the ship’s seawater intake system and using pumps on the ice floe, and 3) ice cores, snow, and frost flowers collected from sites on the MOSAiC and surrounding ice floes. Be-7 analysis was performed using high purity germanium gamma detectors. 
    more » « less
  2. Abstract. In the high-latitude Arctic, wintertime sea ice and snowinsulate the relatively warmer ocean from the colder atmosphere. While theclimate warms, wintertime Arctic surface heat fluxes remain dominated by theinsulating effects of snow and sea ice covering the ocean until the sea icethins enough or sea ice concentrations decrease enough to allow for directocean–atmosphere heat fluxes. The Community Earth System Model version 1 LargeEnsemble (CESM1-LE) simulates increases in wintertime conductive heat fluxesin the ice-covered Arctic Ocean by ∼ 7–11 W m−2 bythe mid-21st century, thereby driving an increased warming of theatmosphere. These increased fluxes are due to both thinning sea ice anddecreasing snow on sea ice. The simulations analyzed here use a sub-grid-scaleice thickness distribution. Surface heat flux estimates calculated usinggrid-cell mean values of sea ice thicknesses underestimate mean heat fluxesby ∼16 %–35 % and overestimate changes in conductive heatfluxes by up to ∼36 % in the wintertime Arctic basin evenwhen sea ice concentrations remain above 95 %. These results highlight howwintertime conductive heat fluxes will increase in a warming world evenduring times when sea ice concentrations remain high and that snow and thedistribution of snow significantly impact large-scale calculations ofwintertime surface heat budgets in the Arctic. 
    more » « less
  3. Abstract Atmospheric deposition is an important pathway for delivering micronutrient and pollutant trace elements (TEs) to the surface ocean. In the central Arctic, much of this supply takes place onto sea ice during winter, before eventual delivery to the ocean during summertime melt. However, the seasonality of aerosol TE loading, solubility, and deposition flux are poorly studied over the Arctic Ocean, due to the difficulties of wintertime sampling. As part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, aerosols collected during winter and spring (December–May) were analyzed for soluble, labile, and total TE concentrations. Despite low dust loading, mineral aerosol accounted for most of the variation in total Fe, Al, Ti, V, Mn, and Th concentrations. In contrast, soluble TE concentrations were more closely linked to non‐sea‐salt sulfate, and Fe solubility was significantly higher during Arctic winter (median = 6.5%) than spring (1.9%), suggesting an influence from Arctic haze. Beryllium‐7 data were used to calculate an average bulk deposition velocity of 613 ± 153 m d−1over most of the study period, which was applied to calculate seasonal deposition fluxes of total, labile, and soluble TEs to the central Arctic. Total TE fluxes (173 ± 145 nmol m−2 d−1for Fe) agreed within a factor of two or three with earlier summertime estimates, with generally higher wintertime concentrations offset by a lower deposition velocity. Cumulative seasonal deposition of total, labile, and soluble Fe to the central Arctic Ocean was calculated at 25 ± 21, 5 ± 3, and 2 ± 2 μmol m−2, respectively. 
    more » « less
  4. Abstract The sub-kilometre scale distribution of snow depth on Arctic sea ice impacts atmosphere-ice fluxes of energy and mass, and is of importance for satellite estimates of sea-ice thickness from both radar and lidar altimeters. While information about the mean of this distribution is increasingly available from modelling and remote sensing, the full distribution cannot yet be resolved. We analyse 33 539 snow depth measurements from 499 transects taken at Soviet drifting stations between 1955 and 1991 and derive a simple statistical distribution for snow depth over multi-year ice as a function of only the mean snow depth. We then evaluate this snow depth distribution against snow depth transects that span first-year ice to multiyear ice from the MOSAiC, SHEBA and AMSR-Ice field campaigns. Because the distribution can be generated using only the mean snow depth, it can be used in the downscaling of several existing snow depth products for use in flux modelling and altimetry studies. 
    more » « less
  5. Repeated transects have become the backbone of spatially distributed ice and snow thickness measurements crucial for understanding of ice mass balance. Here we detail the transects at the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) 2019–2020, which represent the first such measurements collected across an entire season. Compared with similar historical transects, the snow at MOSAiC was thin (mean depths of approximately 0.1–0.3 m), while the sea ice was relatively thick first-year ice (FYI) and second-year ice (SYI). SYI was of two distinct types: relatively thin level ice formed from surfaces with extensive melt pond cover, and relatively thick deformed ice. On level SYI, spatial signatures of refrozen melt ponds remained detectable in January. At the beginning of winter the thinnest ice also had the thinnest snow, with winter growth rates of thin ice (0.33 m month−1 for FYI, 0.24 m month−1 for previously ponded SYI) exceeding that of thick ice (0.2 m month−1). By January, FYI already had a greater modal ice thickness (1.1 m) than previously ponded SYI (0.9 m). By February, modal thickness of all SYI and FYI became indistinguishable at about 1.4 m. The largest modal thicknesses were measured in May at 1.7 m. Transects included deformed ice, where largest volumes of snow accumulated by April. The remaining snow on level ice exhibited typical spatial heterogeneity in the form of snow dunes. Spatial correlation length scales for snow and sea ice ranged from 20 to 40 m or 60 to 90 m, depending on the sampling direction, which suggests that the known anisotropy of snow dunes also manifests in spatial patterns in sea ice thickness. The diverse snow and ice thickness data obtained from the MOSAiC transects represent an invaluable resource for model and remote sensing product development. 
    more » « less