skip to main content

This content will become publicly available on February 21, 2025

Title: Aerosol Deposition and Snow Accumulation Processes From Beryllium‐7 Measurements in the Central Arctic Ocean: Results From the MOSAiC Expedition

We use a tracer method involving the cosmogenic radioisotope beryllium‐7 (half‐life = 53.3 days) to follow the deposition of aerosols and the fate of snow on the MOSAiC ice floe during winter and spring 2019–2020. When examined alongside data from earlier studies in the Arctic Ocean that covered summer and fall, Be‐7 inventories indicate a summertime peak for aerosol Be‐7 deposition fluxes coinciding with seasonal minima boundary‐level aerosol concentrations, which suggests that deposition fluxes are primarily controlled by precipitation. This conclusion is supported by the linear relationship between Be‐7 fluxes and precipitation rates derived from data from the MOSAiC and SHEBA expeditions. Inventories of Be‐7 within the snow column exhibited evidence of significant redistribution. Be‐7 deficits, relative to the flux, were observed in areas of level sea ice while excess Be‐7 was found associated with deformed ice features such as pressure ridges, leading to the following estimates for the distribution of snow on the ice floe in May 2020: 75–93% of the snow mass is found on deformed sea ice with the remainder on level ice. Furthermore, uncertainties associated with measurements of Be‐7 concentrations within the ocean mixed layer would allow for losses of snow through open leads of up to approximately 20% of the flux. Our snow distribution estimates agree with data from repeat snow depth transect measurements. These results suggest that Be‐7 can be a useful tool in studying snow redistribution.

more » « less
Award ID(s):
1753423 1753408
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition was an international initiative in which research vessel (R/V) Polarstern drifted with the sea ice in the Central Arctic Ocean from October 2019 to September 2020. Here, we present data from a study in which Beryllium-7, a naturally occurring radioactive isotope with a half-life of 53 days, is used as a tracer for the atmospheric deposition of trace elements to the ocean / ice surface and their partitioning among the seawater, ice and snow catchments during winter and spring. The data sets include measurements of Be-7 in 1) aerosol particles collected on filters using a high volume sampler on Polastern, 2) seawater from the upper water column (8-60 meters depth) collected using the ship’s seawater intake system and using pumps on the ice floe, and 3) ice cores, snow, and frost flowers collected from sites on the MOSAiC and surrounding ice floes. Be-7 analysis was performed using high purity germanium gamma detectors. 
    more » « less
  2. Sea ice thickness is a key parameter in the polar climate and ecosystem. Thermodynamic and dynamic processes alter the sea ice thickness. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided a unique opportunity to study seasonal sea ice thickness changes of the same sea ice. We analyzed 11 large-scale (∼50 km) airborne electromagnetic sea thickness and surface roughness surveys from October 2019 to September 2020. Data from ice mass balance and position buoys provided additional information. We found that thermodynamic growth and decay dominated the seasonal cycle with a total mean sea ice thickness increase of 1.4 m (October 2019 to June 2020) and decay of 1.2 m (June 2020 to September 2020). Ice dynamics and deformation-related processes, such as thin ice formation in leads and subsequent ridging, broadened the ice thickness distribution and contributed 30% to the increase in mean thickness. These processes caused a 1-month delay between maximum thermodynamic sea ice thickness and maximum mean ice thickness. The airborne EM measurements bridged the scales from local floe-scale measurements to Arctic-wide satellite observations and model grid cells. The spatial differences in mean sea ice thickness between the Central Observatory (<10 km) of MOSAiC and the Distributed Network (<50 km) were negligible in fall and only 0.2 m in late winter, but the relative abundance of thin and thick ice varied. One unexpected outcome was the large dynamic thickening in a regime where divergence prevailed on average in the western Nansen Basin in spring. We suggest that the large dynamic thickening was due to the mobile, unconsolidated sea ice pack and periodic, sub-daily motion. We demonstrate that this Lagrangian sea ice thickness data set is well suited for validating the existing redistribution theory in sea ice models. Our comprehensive description of seasonal changes of the sea ice thickness distribution is valuable for interpreting MOSAiC time series across disciplines and can be used as a reference to advance sea ice thickness modeling. 
    more » « less
  3. We present sea ice temperature and salinity data from first-year ice (FYI) and second-year ice (SYI) relevant to the temporal development of sea ice permeability and brine drainage efficiency from the early growth phase in October 2019 to the onset of spring warming in May 2020. Our dataset was collected in the central Arctic Ocean during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Expedition in 2019 to 2020. MOSAiC was an international transpolar drift expedition in which the German icebreaker RV Polarstern anchored into an ice floe to gain new insights into Arctic climate over a full annual cycle. In October 2019, RV Polarstern moored to an ice floe in the Siberian sector of the Arctic at 85 degrees north and 137 degrees east to begin the drift towards the North Pole and the Fram Strait via the Transpolar Drift Stream. The data presented here were collected during the first three legs of the expedition, so all the coring activities took place on the same floe. The end dates of legs 1, 2, and 3 were 13 December, 24 February, and 4 June, respectively. The dataset contributed to a baseline study entitled, Deciphering the properties of different Arctic ice types during the growth phase of the MOSAiC floes: Implications for future studies. The study highlights downward directed gas pathways in FYI and SYI by inferring sea ice permeability and potential brine release from several time series of temperature and salinity measurements. The physical properties presented in this paper lay the foundation for subsequent analyses on actual gas contents measured in the ice cores, as well as air-ice and ice-ocean gas fluxes. Sea ice cores were collected with a Kovacs Mark II 9 cm diameter corer. To measure ice temperatures, about 4.5 cm deep holes were drilled into the core (intervals varied by site and leg) . The temperatures were measured by a digital thermometer within minutes after the cores were retrieved. The ice cores were placed into pre-labelled plastic sleeves sealed at the bottom end. The ice cores were transported to RV Polarstern and stored in a -20 degrees Celsius freezer. Each of the cores was sub-sampled, melted at room temperature, and processed for salinity within one or two days. The practical salinity was estimated by measuring the electrical conductivity and temperature of the melted samples using a WTW Cond 3151 salinometer equipped with a Tetra-Con 325 four-electrode conductivity cell. The practical salinity represents the the salinity estimated from the electrical conductivity of the solution. The dataset also contains derived variables, including sea ice density, brine volume fraction, and the Rayleigh number. 
    more » « less
  4. This study evaluates the simulation of wintertime (15 October, 2019, to 15 March, 2020) statistics of the central Arctic near-surface atmosphere and surface energy budget observed during the MOSAiC campaign with short-term forecasts from 7 state-of-the-art operational and experimental forecast systems. Five of these systems are fully coupled ocean-sea ice-atmosphere models. Forecast systems need to simultaneously simulate the impact of radiative effects, turbulence, and precipitation processes on the surface energy budget and near-surface atmospheric conditions in order to produce useful forecasts of the Arctic system. This study focuses on processes unique to the Arctic, such as, the representation of liquid-bearing clouds at cold temperatures and the representation of a persistent stable boundary layer. It is found that contemporary models still struggle to maintain liquid water in clouds at cold temperatures. Given the simple balance between net longwave radiation, sensible heat flux, and conductive ground flux in the wintertime Arctic surface energy balance, a bias in one of these components manifests as a compensating bias in other terms. This study highlights the different manifestations of model bias and the potential implications on other terms. Three general types of challenges are found within the models evaluated: representing the radiative impact of clouds, representing the interaction of atmospheric heat fluxes with sub-surface fluxes (i.e., snow and ice properties), and representing the relationship between stability and turbulent heat fluxes.

    more » « less
  5. Deming, J. ; Nicolaus, M. (Ed.)

    As part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), four autonomous seasonal ice mass balance buoys were deployed in first- and second-year ice. These buoys measured position, barometric pressure, snow depth, ice thickness, ice growth, surface melt, bottom melt, and vertical profiles of temperature from the air, through the snow and ice, and into the upper ocean. Observed air temperatures were similar at all four sites; however, snow–ice interface temperatures varied by as much as 10°C, primarily due to differences in snow depth. Observed winter ice growth rates (November to May) were <1 cm day−1, with summer melt rates (June to July) as large as 5 cm day−1. Air temperatures changed as much as 2°C hour−1 but were dampened to <0.3°C hour−1 at the snow–ice interface. Initial October ice thicknesses ranged from 0.3 m in first-year ice to 1.2 m in second-year ice. By February, this range was only 1.20–1.46 m, due in part to differences in the onset of basal freezing. In second-year ice, this delay was due to large brine-filled voids in the ice; propagating the cold front through this ice required freezing the brine. Mass balance results were similar to those measured by autonomous buoys deployed at the North Pole from 2000 to 2013. Winter average estimates of the ocean heat flux ranged from 0 to 3 W m−2, with a large increase in June 2020 as the floe moved into warmer water. Estimates of average snow thermal conductivity measured at two buoys during periods of linear temperature profiles were 0.41 and 0.42 W m−1 °C−1, higher than previously published estimates. Results from these ice mass balance buoys can contribute to efforts to close the MOSAiC heat budget.

    more » « less