Brassinosteroids (BR) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. BRs function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. • We quantified the level of 23,975 transcripts, 11,183 proteins, and 27,887phosphorylation sites in wild-type Arabidopsis thalianaand inmutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (B IN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively.• We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity.• Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.
more »
« less
Translating Earth system boundaries for cities and businesses
Operating within safe and just Earth system boundaries requires mobilizing key actors across scale to set targets and take actions accordingly. Robust, transparent and fair cross-scale translation methods are essential to help navigate through the multiple steps of scientific and normative judgements in translation, with clear awareness of associated assumptions, bias and uncertainties. Here, through literature review and expert elicitation, we identify commonly used sharing approaches, illustrate ten principles of translation and present a protocol involving key building blocks and control steps in translation. We pay particular attention to businesses and cities, two understudied but critical actors to bring on board.
more »
« less
- Award ID(s):
- 2231770
- PAR ID:
- 10492322
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Sustainability
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2398-9629
- Page Range / eLocation ID:
- 108 to 119
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cellular mRNAs in plants and animals have a 5′-cap structure that is accepted as the recognition point to initiate translation by ribosomes. Consequently, it was long assumed that the translation initiation apparatus was built solely for a cap-dependent (CD) mechanism. Exceptions that emerged invoke structural damage (proteolytic cleavage) to eukaryotic initiation factor 4 (eIF4) factors that disable cap recognition. The residual eIF4 complex is thought to be crippled, but capable of cap-independent (CI) translation to recruit viral or death-associated mRNAs begrudgingly when cells are in great distress. However, situations where CI translation coexists with CD translation are now known. In such cases, CI translation is still a minor mechanism in the major background of CD synthesis. In this review, I propose that germ cells do not fit this mold. Using observations from various animal models of oogenesis and spermatogenesis, I suggest that CI translation is a robust partner to CD translation to carry out the translational control that is so prevalent in germ cell development. Evidence suggests that CI translation provides surveillance of germ cell homeostasis, while CD translation governs the regulated protein synthesis that ushers these meiotic cells through the remarkable steps in sperm/oocyte differentiation.more » « less
-
null (Ed.)Absatract Actors collaborate via message exchanges to reach a common goal. Experience has shown, however, that pure message-based communication is limiting and forces developers to use design patterns. The recently introduced dataspace actor model borrows ideas from the tuple space realm. It offers a tightly controlled, shared storage facility for groups of actors. In this model, actors assert facts that they wish to share and interests in such assertions. The dataspace notifies interested parties of changes to the set of assertions that they are interested in. Although it is straightforward to add the dataspace model to untyped languages, adding a typed interface is both necessary and challenging. Without restrictions on exchanged data, a faulty actor may propagate erroneous data through a malformed assertion, causing an otherwise well-behaved actor to crash—violating the key principle of failure isolation. A properly designed type system can prevent this scenario and rule out other kinds of uncooperative actors. This paper presents the first structural type system for the dataspace model of actors; it does not address the question of behavioral types for assertion-oriented protocols.more » « less
-
The health of the planet and its people are at risk. The deterioration of the global commons—ie, the natural systems that support life on Earth—is exacerbating energy, food, and water insecurity, and increasing the risk of disease, disaster, displacement, and conflict. In this Commission, we quantify safe and just Earth-system boundaries (ESBs) and assess minimum access to natural resources required for human dignity and to enable escape from poverty. Collectively, these describe a safe and just corridor that is essential to ensuring sustainable and resilient human and planetary health and thriving in the Anthropocene. We then discuss the need for translation of ESBs across scales to inform science-based targets for action by key actors (and the challenges in doing so), and conclude by identifying the system transformations necessary to bring about a safe and just future. Our concept of the safe and just corridor advances research on planetary boundaries and the justice and Earth-system aspects of the Sustainable Development Goals. We define safe as ensuring the biophysical stability of the Earth system, and our justice principles include minimising harm, meeting minimum access needs, and redistributing resources and responsibilities to enhance human health and wellbeing. The ceiling of the safe and just corridor is defined by the more stringent of the safe and just ESBs to minimise significant harm and ensure Earth-system stability. The base of the corridor is defined by the impacts of minimum global access to food, water, energy, and infrastructure for the global population, in the domains of the variables for which we defined the ESBs. Living within the corridor is necessary, because exceeding the ESBs and not meeting basic needs threatens human health and life on Earth. However, simply staying within the corridor does not guarantee justice because within the corridor resources can also be inequitably distributed, aggravating human health and causing environmental damage. Procedural and substantive justice are necessary to ensure that the space within the corridor is justly shared. We define eight safe and just ESBs for five domains—the biosphere (functional integrity and natural ecosystem area), climate, nutrient cycles (phosphorus and nitrogen), freshwater (surface and groundwater), and aerosols—to reduce the risk of degrading biophysical life-support systems and avoid tipping points. Seven of the ESBs have already been transgressed: functional integrity, natural ecosystem area, climate, phosphorus, nitrogen, surface water, and groundwater. The eighth ESB, air pollution, has been transgressed at the local level in many parts of the world. Although safe boundaries would ensure Earth-system stability and thus safeguard the overall biophysical conditions that have enabled humans to flourish, they do not necessarily safeguard everyone against harm or allow for minimum access to resources for all. We use the concept of Earth-system justice—which seeks to ensure wellbeing and reduce harm within and across generations, nations, and communities, and between humans and other species, through procedural and distributive justice—to assess safe boundaries. Earth-system justice recognises unequal responsibility for, and unequal exposure and vulnerability to, Earth-system changes, and also recognises unequal capacities to respond and unequal access to resources. We also assess the extent to which safe ESBs could minimise irreversible, existential, and other major harms to human health and wellbeing through a review of who is affected at each boundary. Not all safe ESBs are just, in that they do not minimise all significant harm (eg, that associated with the climate change, aerosol, or nitrogen ESBs). Billions of people globally do not have sufficient access to energy, clean water, food, and other resources. For climate change, for example, tens of millions of people are harmed at lower levels of warming than that defined in the safe ESB, and thus to avoid significant harm would require a more stringent ESB. In other domains, the safe ESBs align with the just ESBs, although some need to be modified, or complemented with local standards, to prevent significant harm (eg, the aerosols ESB). We examine the implications of achieving the social SDGs in 2018 through an impact modelling exercise, and quantify the minimum access to resources required for basic human dignity (level 1) as well as the minimum resources required to enable escape from poverty (level 2). We conclude that without social transformation and redistribution of natural resource use (eg, from top consumers of natural resources to those who currently do not have minimum access to these resources), meeting minimum-access levels for people living below the minimum level would increase pressures on the Earth system and the risks of further transgressions of the ESBs. We also estimate resource-access needs for human populations in 2050 and the associated Earth-system impacts these could have. We project that the safe and just climate ESB will be overshot by 2050, even if everybody in the world lives with only the minimum required access to resources (no more, no less), unless there are transformations of, for example, the energy and food systems. Thus, a safe and just corridor will only be possible with radical societal transformations and technological changes. Living within the safe and just corridor requires operationalisation of ESBs by key actors across all levels, which can be achieved via cross-scale translation (whereby resources and responsibilities for impact reductions are equitably shared among actors). We focus on cities and businesses because of the magnitude of their impacts on the Earth system, and their potential to take swift action and act as agents of change. We explore possible approaches for translating each ESB to cities and businesses via the sequential steps of transcription, allocation, and adjustment. We highlight how different elements of Earth-system justice can be reflected in the allocation and adjustment steps by choosing appropriate sharing approaches, informed by the governance context and broader enabling conditions. Finally we discuss system transformations that could move humanity into a safe and just corridor and reduce risks of instability, injustice, and harm to human health. These transformations aim to minimise harm and ensure access to essential resources, while addressing the drivers of Earth-system change and vulnerability and the institutional and social barriers to systemic transformations, and include reducing and reallocating consumption, changing economic systems, technology, and governance.more » « less
-
In the last decade, cybercrime has risen considerably. One key factor is the proliferation of online cybercrime communities, where actors trade products and services, and also learn from each other. Accordingly, understanding the operation and behavior of these communities is of great interest, and they have been explored across multiple disciplines with different, often quite novel, approaches. This survey explores the challenges inherent to the field and the methodological approaches researchers used to understand this space. We note that, in many cases, cybercrime research is more of an art than a science. We highlight the good practices and propose a list of recommendations for future cybercrime community scholars, including taking steps to verify and validate results, establishing privacy and ethical research practices, and mitigating the challenge of ground truth data.more » « less
An official website of the United States government

