skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep-Learning-Based Segmentation of Keyhole in In-Situ X-ray Imaging of Laser Powder Bed Fusion
In laser powder bed fusion processes, keyholes are the gaseous cavities formed where laser interacts with metal, and their morphologies play an important role in defect formation and the final product quality. The in-situ X-ray imaging technique can monitor the keyhole dynamics from the side and capture keyhole shapes in the X-ray image stream. Keyhole shapes in X-ray images are then often labeled by humans for analysis, which increasingly involves attempting to correlate keyhole shapes with defects using machine learning. However, such labeling is tedious, time-consuming, error-prone, and cannot be scaled to large data sets. To use keyhole shapes more readily as the input to machine learning methods, an automatic tool to identify keyhole regions is desirable. In this paper, a deep-learning-based computer vision tool that can automatically segment keyhole shapes out of X-ray images is presented. The pipeline contains a filtering method and an implementation of the BASNet deep learning model to semantically segment the keyhole morphologies out of X-ray images. The presented tool shows promising average accuracy of 91.24% for keyhole area, and 92.81% for boundary shape, for a range of test dataset conditions in Al6061 (and one AliSi10Mg) alloys, with 300 training images/labels and 100 testing images for each trial. Prospective users may apply the presently trained tool or a retrained version following the approach used here to automatically label keyhole shapes in large image sets.  more » « less
Award ID(s):
2002840
PAR ID:
10492325
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
17
Issue:
2
ISSN:
1996-1944
Page Range / eLocation ID:
510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an innovative solution to the challenge of part obsolescence in microelectronics, focusing on the semantic segmentation of PCB X-ray images using deep learning. Addressing the scarcity of annotated datasets, we developed a novel method to synthesize X-ray images of PCBs, employing virtual images with predefined geometries and inherent labeling to eliminate the need for manual annotation. Our approach involves creating realistic synthetic images that mimic actual X-ray projections, enhanced by incorporating noise profiles derived from real X-ray images. Two deep learning networks, based on the U-Net architecture with a VGG-16 backbone, were trained exclusively on these synthetic datasets to segment PCB junctions and traces. The results demonstrate the effectiveness of this synthetic data-driven approach, with the networks achieving high Jaccard indices on real PCB X-ray images. This study not only offers a scalable and cost-effective alternative for dataset generation in microelectronics but also highlights the potential of synthetic data in training models for complex image analysis tasks, suggesting broad applications in various domains where data scarcity is a concern. 
    more » « less
  2. Abstract The metal additive manufacturing industry is actively developing instruments and strategies to enable higher productivity, optimal build quality, and controllable as-built microstructure. A beam controlling technique, laser oscillation has shown potential in all these aspects in laser welding; however, few attempts have been made to understand the underlying physics of the oscillating keyholes/melt pools which are the prerequisites for these strategies to become a useful tool for laser-based additive manufacturing processes. Here, to address this gap, we utilized a synchrotron-based X-ray operando technique to image the dynamic keyhole oscillation in Ti-6Al-4V using a miniature powder bed fusion setup. We found good agreement between the experimental observations and simulations performed with a validated Lattice Boltzmann multiphysics model. The study revealed the continuous and periodic fluctuations in the characteristic keyhole parameters that are unique to the oscillating laser beam processing and responsible for the chevron pattern formation at solidification. In particular, despite the intrinsic longer-range fluctuation, the oscillating technique displayed potential for reducing keyhole instability, mitigating porosity formation, and altering surface topology. These insights on the oscillating keyhole dynamics can be useful for the future development and application of this technique. 
    more » « less
  3. This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity 3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images, e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct 3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models; while, all current deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT). 
    more » « less
  4. Abstract Image segmentation of the liver is an important step in treatment planning for liver cancer. However, manual segmentation at a large scale is not practical, leading to increasing reliance on deep learning models to automatically segment the liver. This manuscript develops a generalizable deep learning model to segment the liver on T1-weighted MR images. In particular, three distinct deep learning architectures (nnUNet, PocketNet, Swin UNETR) were considered using data gathered from six geographically different institutions. A total of 819 T1-weighted MR images were gathered from both public and internal sources. Our experiments compared each architecture’s testing performance when trained both intra-institutionally and inter-institutionally. Models trained using nnUNet and its PocketNet variant achieved mean Dice-Sorensen similarity coefficients>0.9 on both intra- and inter-institutional test set data. The performance of these models suggests that nnUNet and PocketNet liver segmentation models trained on a large and diverse collection of T1-weighted MR images would on average achieve good intra-institutional segmentation performance. 
    more » « less
  5. Laser powder bed fusion is a dominant metal 3D printing technology. However, porosity defects remain a challenge for fatigue-sensitive applications. Some porosity is associated with deep and narrow vapor depressions called keyholes, which occur under high-power, low–scan speed laser melting conditions. High-speed x-ray imaging enables operando observation of the detailed formation process of pores in Ti-6Al-4V caused by a critical instability at the keyhole tip. We found that the boundary of the keyhole porosity regime in power-velocity space is sharp and smooth, varying only slightly between the bare plate and powder bed. The critical keyhole instability generates acoustic waves in the melt pool that provide additional yet vital driving force for the pores near the keyhole tip to move away from the keyhole and become trapped as defects. 
    more » « less