skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High frequency beam oscillation keyhole dynamics in laser melting revealed by in-situ x-ray imaging
Abstract The metal additive manufacturing industry is actively developing instruments and strategies to enable higher productivity, optimal build quality, and controllable as-built microstructure. A beam controlling technique, laser oscillation has shown potential in all these aspects in laser welding; however, few attempts have been made to understand the underlying physics of the oscillating keyholes/melt pools which are the prerequisites for these strategies to become a useful tool for laser-based additive manufacturing processes. Here, to address this gap, we utilized a synchrotron-based X-ray operando technique to image the dynamic keyhole oscillation in Ti-6Al-4V using a miniature powder bed fusion setup. We found good agreement between the experimental observations and simulations performed with a validated Lattice Boltzmann multiphysics model. The study revealed the continuous and periodic fluctuations in the characteristic keyhole parameters that are unique to the oscillating laser beam processing and responsible for the chevron pattern formation at solidification. In particular, despite the intrinsic longer-range fluctuation, the oscillating technique displayed potential for reducing keyhole instability, mitigating porosity formation, and altering surface topology. These insights on the oscillating keyhole dynamics can be useful for the future development and application of this technique.  more » « less
Award ID(s):
1905910
PAR ID:
10464092
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Materials
Volume:
4
Issue:
1
ISSN:
2662-4443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dynamic solidification behavior during metal additive manufacturing directly influences the as-built microstructure, defects, and mechanical properties of printed parts. How the formation of these features is driven by temperature variation (e.g., thermal gradient magnitude and solidification front velocity) has been studied extensively in metal additive manufacturing, with synchrotron x-ray imaging becoming a critical tool to monitor these processes. Here, we extend these efforts to monitoring full thermomechanical deformation during solidification through the use of operando x-ray diffraction during laser melting. With operando diffraction, we analyze thermomechanical deformation modes such as torsion, bending, fragmentation, assimilation, oscillation, and interdendritic growth. Understanding such phenomena can aid the optimization of printing strategies to obtain specific microstructural features, including localized misorientations, dislocation substructure, and grain boundary character. The interpretation of operando diffraction results is supported by post-mortem electron backscatter diffraction analyses. 
    more » « less
  2. In laser powder bed fusion processes, keyholes are the gaseous cavities formed where laser interacts with metal, and their morphologies play an important role in defect formation and the final product quality. The in-situ X-ray imaging technique can monitor the keyhole dynamics from the side and capture keyhole shapes in the X-ray image stream. Keyhole shapes in X-ray images are then often labeled by humans for analysis, which increasingly involves attempting to correlate keyhole shapes with defects using machine learning. However, such labeling is tedious, time-consuming, error-prone, and cannot be scaled to large data sets. To use keyhole shapes more readily as the input to machine learning methods, an automatic tool to identify keyhole regions is desirable. In this paper, a deep-learning-based computer vision tool that can automatically segment keyhole shapes out of X-ray images is presented. The pipeline contains a filtering method and an implementation of the BASNet deep learning model to semantically segment the keyhole morphologies out of X-ray images. The presented tool shows promising average accuracy of 91.24% for keyhole area, and 92.81% for boundary shape, for a range of test dataset conditions in Al6061 (and one AliSi10Mg) alloys, with 300 training images/labels and 100 testing images for each trial. Prospective users may apply the presently trained tool or a retrained version following the approach used here to automatically label keyhole shapes in large image sets. 
    more » « less
  3. Additively manufactured electronics (AMEs), also known as printed electronics, are becoming increasingly important for the anticipated Internet of Things (IoT). This requires manufacturing technologies that allow the integration of various pure functional materials and devices onto different flexible and rigid surfaces. However, the current ink-based technologies suffer from complex and expensive ink formulation, ink-associated contaminations (additives/solvents), and limited sources of printing materials. Thus, printing contamination-free and multimaterial structures and devices is challenging. Here, a multimaterial additive nanomanufacturing (M-ANM) technique utilizing directed laser deposition at the nano and microscale is demonstrated, allowing the printing of lateral and vertical hybrid structures and devices. This M-ANM technique involves pulsed laser ablation of solid targets placed on a target carousel inside the printer head for in-situ generation of contamination-free nanoparticles, which are then guided via a carrier gas toward the nozzle and onto the surface of the substrate, where they are sintered and printed in real-time by a second laser. The target carousel brings a particular target in engagement with the ablation laser beam in predetermined sequences to print multiple materials, including metals, semiconductors, and insulators, in a single process. Using this M-ANM technique, various multimaterial devices such as silver/zinc oxide (Ag/ZnO) photodetector and hybrid silver/aluminum oxide (Ag/Al2O3) circuits are printed and characterized. The quality and versatility of our M-ANM technique offer a potential manufacturing option for emerging IoT. 
    more » « less
  4. This Tutorial Review highlights strategies for leveraging the micron-to-submicron-scale additive manufacturing technique, “direct laser writing”, to enable 3D microfluidic technologies. 
    more » « less
  5. Abstract Laser processing of thermoelectric materials provides an avenue to influence the nano‐ and micro‐structure of the material and enable additive manufacturing processes that facilitate freeform device shapes, a capability that is lacking in thermoelectric materials processing. This paper describes the multiscale structures formed in selenium‐doped bismuth telluride, an n‐type thermoelectric material, from laser‐induced rapid melting and solidification. Macroscale samples are fabricated in a layer‐by‐layer technique using laser powder bed fusion (also known as selective laser melting). Laser processing results in highly textured columnar grains oriented in the build direction, nanoscale inclusions, and a shift in the primary charge carriers. Sparse oxide inclusions and tellurium segregation shift the material to p‐type behavior with a Seebeck coefficient that peaks at 143 µV K–1at 95 °C. With an average relative density of 74%, fabricated parts have multiscale porosity and microscale cracking that likely resulted from low powder layer packing density and processing parameters near the transition threshold between conduction and keyhole mode processing. These results provide insights regarding the pathways for influencing carrier transport in thermoelectric materials via laser melting‐induced nanoscale structuring and the laser processing parameters required to achieve effective powder consolidation and hierarchical structuring in thermoelectric parts. 
    more » « less