skip to main content


This content will become publicly available on May 18, 2024

Title: Developing a more complete understanding of tropical montane forest disturbance ecology through landslide research

Landslides are a central component of tropical montane forest disturbance regimes, including in the tropical Andes biodiversity hotspot, one of the most biodiverse ecosystems in the world. Technological developments in remote sensing have made landscape-scale landslide studies possible, unlocking new avenues for understanding montane biodiversity, ecosystem functioning, and the future effects of climate change. Here, we outline three axes of inquiry for future landslide ecology research in Andean tropical montane forest. We focus exclusively on the Andes due to the vast floral diversity and high endemicity of the tropical Andes biodiversity hotspot, and its importance for global biodiversity and regional ecosystem service provisioning; the broad elevational, latitudinal, and topographic gradients across which landslide dynamics play out; and the existence of long-term plot networks that provide the necessary baseline data on mature forest structure, composition, and functioning to contextualize disturbance impacts. The three lines of study we outline, which draw heavily on remote sensing data and techniques, will deepen scientific understanding of tropical montane forest biodiversity and ecosystem functioning, and the potential impacts of climate change on both. They are: (1) tracking landslide biodiversity dynamics across time and space with high spatial and temporal resolution satellite and unoccupied aerial vehicle imagery; (2) assessing the ecological influence of landslides through the lens of plant functional diversity with imaging spectroscopy; and (3) understanding current and predicting future landslide regimes at scale by building a living landslide inventory spanning the tropical Andes. The research findings from these three axes of inquiry will shed light on the role of landslides and the process of forest recovery from them in both the Andes and worldwide.

 
more » « less
Award ID(s):
1754647
NSF-PAR ID:
10492349
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
6
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    The biodiversity crisis has highlighted the need to assess and map biodiversity in order to prioritize conservation efforts. Clearwing butterflies (tribe Ithomiini) have been proposed as biological indicators for habitat quality in Neotropical forests, which contain the world's richest biological communities. Here, we provide maps of different facets of Ithomiini diversity across the Neotropics to identify areas of evolutionary and ecological importance for conservation and evaluate their overlap with current anthropogenic threats.

    Location

    Neotropics.

    Methods

    We ran species distribution models on a data set based on 28,986 georeferenced occurrences representing 388 ithomiine species to generate maps of geographic rarity, taxonomic, phylogenetic and Müllerian mimetic wing pattern diversity. We quantified and mapped the overlap of diversity hotspots with areas threatened by or providing refuge from current anthropogenic pressures.

    Results

    The eastern slopes of the Andes formed the primary hotspot of taxonomic, phylogenetic and mimetic diversity, with secondary hotspots in Central America and the Atlantic Forest. Most diversity indices were strongly spatially correlated. Nevertheless, species‐poor communities on the Pacific slopes of the Andes also sheltered some of the geographically rarest species. Overall, tropical montane forests that host high species and mimetic diversity as well as rare species and mimicry rings appeared particularly under threat.

    Main conclusions

    Remote parts of the Upper Amazon may act as refuges against current anthropogenic pressures for a limited portion of Ithomiini diversity. Furthermore, it is likely that the current threat status may worsen with ongoing climate change and deforestation. In this context, the tropical Andes occupy a crucial position as the primary hotspot for multiple facets of biodiversity for ithomiine butterflies, as they do for angiosperms, tetrapods and other insect taxa. Our results support the role of ithomiine butterflies as a suitable flagship indicator group for Neotropical butterfly diversity and reinforce the position of the tropical Andes as a flagship region for biodiversity conservation in general, and insect and butterfly conservation in particular.

     
    more » « less
  2. Abstract

    Landslides are common natural disturbances in tropical montane forests. While the geomorphic drivers of landslides in the Andes have been studied, factors controlling post‐landslide forest recovery across the steep climatic and topographic gradients characteristic of tropical mountains are poorly understood.

    Here we use a LiDAR‐derived canopy height map coupled with a 25‐year landslide time‐series map to examine how landslide, topographic and biophysical factors, along with residual vegetation, affect canopy height and heterogeneity in regenerating landslides. We also calculate above‐ground biomass accumulation rates and estimate the time for landslides to recover to mature forest biomass levels.

    We find that age and elevation are the biggest determinants of forest recovery, and that the jump‐start in regeneration that residual vegetation provides lasts for at least 18 years. Our estimates of time to biomass recovery (31.6–37.1 years) are surprisingly rapid, and as a result we recommend that future research pair LiDAR with hyperspectral imagery to estimate forest above‐ground biomass in frequently disturbed landscapes.

    Synthesis. Using a high‐resolution LiDAR dataset and a time‐series inventory of 608 landslides distributed across a wide elevational gradient in Andean montane forest, we show that age and elevation are the most influential predictors of forest canopy height and canopy variability. Other features of landslides, in particular the presence of residual vegetation, shape post‐landslide regeneration trajectories. LiDAR allows for a detailed analysis of forest structural recovery across large landscapes and numbers of disturbances, and provides a reasonable upper bound on above‐ground biomass accumulation rates. However, because this method does not capture the effect of compositional change through succession on above‐ground biomass, wherein high‐wood density species gradually replace light‐wooded pioneer species, it overestimates above‐ground biomass. Given previously estimated stem turnover rates along this elevational gradient, we posit that above‐ground biomass recovery takes at least three times as long as our recovery time estimates based on LiDAR‐derived structure alone.

     
    more » « less
  3. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial N export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018) 
    more » « less
  4. Abstract

    Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land‐use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.

     
    more » « less
  5. Abstract

    Understanding the severity and extent of near surface critical zone (CZ) disturbances and their ecosystem response is a pressing concern in the face of increasing human and natural disturbances. Predicting disturbance severity and recovery in a changing climate requires comprehensive understanding of ecosystem feedbacks among vegetation and the surrounding environment, including climate, hydrology, geomorphology, and biogeochemistry. Field surveys and satellite remote sensing have limited ability to effectively capture the spatial and temporal variability of disturbance and CZ properties. Technological advances in remote sensing using new sensors and new platforms have improved observations of changes in vegetation canopy structure and productivity; however, integrating measures of forest disturbance from various sensing platforms is complex. By connecting the potential for remote sensing technologies to observe different CZ disturbance vectors, we show that lower severity disturbance and slower vegetation recovery are more difficult to quantify. Case studies in montane forests from the western United States highlight new opportunities, including evaluating post‐disturbance forest recovery at multiple scales, shedding light on understory vegetation regrowth, detecting specific physiological responses, and refining ecohydrological modeling. Learning from regional CZ disturbance case studies, we propose future directions to synthesize fragmented findings with (a) new data analysis using new or existing sensors, (b) data fusion across multiple sensors and platforms, (c) increasing the value of ground‐based observations, (d) disturbance modeling, and (e) synthesis to improve understanding of disturbance.

     
    more » « less