skip to main content


Search for: All records

Award ID contains: 1754647

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Landslides are common natural disturbances in tropical montane forests. While the geomorphic drivers of landslides in the Andes have been studied, factors controlling post‐landslide forest recovery across the steep climatic and topographic gradients characteristic of tropical mountains are poorly understood.

    Here we use a LiDAR‐derived canopy height map coupled with a 25‐year landslide time‐series map to examine how landslide, topographic and biophysical factors, along with residual vegetation, affect canopy height and heterogeneity in regenerating landslides. We also calculate above‐ground biomass accumulation rates and estimate the time for landslides to recover to mature forest biomass levels.

    We find that age and elevation are the biggest determinants of forest recovery, and that the jump‐start in regeneration that residual vegetation provides lasts for at least 18 years. Our estimates of time to biomass recovery (31.6–37.1 years) are surprisingly rapid, and as a result we recommend that future research pair LiDAR with hyperspectral imagery to estimate forest above‐ground biomass in frequently disturbed landscapes.

    Synthesis. Using a high‐resolution LiDAR dataset and a time‐series inventory of 608 landslides distributed across a wide elevational gradient in Andean montane forest, we show that age and elevation are the most influential predictors of forest canopy height and canopy variability. Other features of landslides, in particular the presence of residual vegetation, shape post‐landslide regeneration trajectories. LiDAR allows for a detailed analysis of forest structural recovery across large landscapes and numbers of disturbances, and provides a reasonable upper bound on above‐ground biomass accumulation rates. However, because this method does not capture the effect of compositional change through succession on above‐ground biomass, wherein high‐wood density species gradually replace light‐wooded pioneer species, it overestimates above‐ground biomass. Given previously estimated stem turnover rates along this elevational gradient, we posit that above‐ground biomass recovery takes at least three times as long as our recovery time estimates based on LiDAR‐derived structure alone.

     
    more » « less
  2. Summary

    Recent studies have demonstrated that ecological processes that shape community structure and dynamics change along environmental gradients. However, much less is known about how the emergence of the gradients themselves shape the evolution of species that underlie community assembly. In this study, we address how the creation of novel environments leads to community assembly via two nonmutually exclusive processes: immigration and ecological sorting of pre‐adapted clades (ISPC), and recent adaptive diversification (RAD). We study these processes in the context of the elevational gradient created by the uplift of the Central Andes.

    We develop a novel approach and method based on the decomposition of species turnover into within‐ and among‐clade components, where clades correspond to lineages that originated before mountain uplift. Effects of ISPC and RAD can be inferred from how components of turnover change with elevation. We test our approach using data from over 500 Andean forest plots.

    We found that species turnover between communities at different elevations is dominated by the replacement of clades that originated before the uplift of the Central Andes.

    Our results suggest that immigration and sorting of clades pre‐adapted to montane habitats is the primary mechanism shaping tree communities across elevations.

     
    more » « less
  3. Abstract

    Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base.

     
    more » « less
  4. Abstract

    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.

     
    more » « less
  5. Free, publicly-accessible full text available July 1, 2024
  6. Landslides are a central component of tropical montane forest disturbance regimes, including in the tropical Andes biodiversity hotspot, one of the most biodiverse ecosystems in the world. Technological developments in remote sensing have made landscape-scale landslide studies possible, unlocking new avenues for understanding montane biodiversity, ecosystem functioning, and the future effects of climate change. Here, we outline three axes of inquiry for future landslide ecology research in Andean tropical montane forest. We focus exclusively on the Andes due to the vast floral diversity and high endemicity of the tropical Andes biodiversity hotspot, and its importance for global biodiversity and regional ecosystem service provisioning; the broad elevational, latitudinal, and topographic gradients across which landslide dynamics play out; and the existence of long-term plot networks that provide the necessary baseline data on mature forest structure, composition, and functioning to contextualize disturbance impacts. The three lines of study we outline, which draw heavily on remote sensing data and techniques, will deepen scientific understanding of tropical montane forest biodiversity and ecosystem functioning, and the potential impacts of climate change on both. They are: (1) tracking landslide biodiversity dynamics across time and space with high spatial and temporal resolution satellite and unoccupied aerial vehicle imagery; (2) assessing the ecological influence of landslides through the lens of plant functional diversity with imaging spectroscopy; and (3) understanding current and predicting future landslide regimes at scale by building a living landslide inventory spanning the tropical Andes. The research findings from these three axes of inquiry will shed light on the role of landslides and the process of forest recovery from them in both the Andes and worldwide.

     
    more » « less
    Free, publicly-accessible full text available May 18, 2024
  7. Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential. 
    more » « less
  8. Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well‐drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1‐ha non‐flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community‐weighted wood density mean (CWM‐wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well‐drained soils. CWM‐wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central‐Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures.

     
    more » « less
  9. McGlinn, Daniel (Ed.)