We compute steady planar incompressible flows and wall shapes that maximize the rate of heat transfer ($$Nu$$) between hot and cold walls, for a given rate of viscous dissipation by the flow ($$Pe^2$$), with no-slip boundary conditions at the walls. In the case of no flow, we show theoretically that the optimal walls are flat and horizontal, at the minimum separation distance. We use a decoupled approximation to show that flat walls remain optimal up to a critical non-zero flow magnitude. Beyond this value, our computed optimal flows and wall shapes converge to a set of forms that are invariant except for a$$Pe^{-1/3}$$scaling of horizontal lengths. The corresponding rate of heat transfer$$Nu \sim Pe^{2/3}$$. We show that these scalings result from flows at the interface between the diffusion-dominated and convection-dominated regimes. We also show that the separation distance of the walls remains at its minimum value at large$$Pe$$.
more »
« less
On the non-self-adjoint and multiscale character of passive scalar mixing under laminar advection
Except in the trivial case of spatially uniform flow, the advection–diffusion operator of a passive scalar tracer is linear and non-self-adjoint. In this study, we exploit the linearity of the governing equation and present an analytical eigenfunction approach for computing solutions to the advection–diffusion equation in two dimensions given arbitrary initial conditions, and when the advecting flow field at any given time is a plane parallel shear flow. Our analysis illuminates the specific role that the non-self-adjointness of the linear operator plays in the solution behaviour, and highlights the multiscale nature of the scalar mixing problem given the explicit dependence of the eigenvalue–eigenfunction pairs on a multiscale parameter$$q=2{\rm i}k\,{\textit {Pe}}$$, where$$k$$is the non-dimensional wavenumber of the tracer in the streamwise direction, and$${\textit {Pe}}$$is the Péclet number. We complement our theoretical discussion on the spectra of the operator by computing solutions and analysing the effect of shear flow width on the scale-dependent scalar decay of tracer variance, and characterize the distinct self-similar dispersive processes that arise from the shear flow dispersion of an arbitrarily compact tracer concentration. Finally, we discuss limitations of the present approach and future directions.
more »
« less
- Award ID(s):
- 1835640
- PAR ID:
- 10492409
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 973
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The motion of a disk in a Langmuir film bounding a liquid substrate is a classical hydrodynamic problem, dating back to Saffman (J. Fluid Mech., vol. 73, 1976, p. 593) who focused upon the singular problem of translation at large Boussinesq number,$${\textit {Bq}}\gg 1$$. A semianalytic solution of the dual integral equations governing the flow at arbitrary$${\textit {Bq}}$$was devised by Hugheset al.(J. Fluid Mech., vol. 110, 1981, p. 349). When degenerated to the inviscid-film limit$${\textit {Bq}}\to 0$$, it produces the value$$8$$for the dimensionless translational drag, which is$$50\,\%$$larger than the classical$$16/3$$-value corresponding to a free surface. While that enhancement has been attributed to surface incompressibility, the mathematical reasoning underlying the anomaly has never been fully elucidated. Here we address the inviscid limit$${\textit {Bq}}\to 0$$from the outset, revealing a singular mechanism where half of the drag is contributed by the surface pressure. We proceed beyond that limit, considering a nearly inviscid film. A naïve attempt to calculate the drag correction using the reciprocal theorem fails due to an edge singularity of the leading-order flow. We identify the formation of a boundary layer about the edge of the disk, where the flow is primarily in the azimuthal direction with surface and substrate stresses being asymptotically comparable. Utilising the reciprocal theorem in a fluid domain tailored to the asymptotic topology of the problem produces the drag correction$$(8\,{\textit {Bq}}/{\rm \pi} ) [ \ln (2/{\textit {Bq}}) + \gamma _E+1]$$,$$\gamma _E$$being the Euler–Mascheroni constant.more » « less
-
Abstract We give an explicit raising operator formula for the modified Macdonald polynomials$$\tilde {H}_{\mu }(X;q,t)$$, which follows from our recent formula for$$\nabla $$on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions$$\tilde {H}^{1,n}(X;q,t)$$that we call$$1,n$$-Macdonald polynomials, which reduce to a scalar multiple of$$\tilde {H}_{\mu }(X;q,t)$$when$$n=1$$. We conjecture that the coefficients of$$1,n$$-Macdonald polynomials in terms of Schur functions belong to$${\mathbb N}[q,t]$$, generalizing Macdonald positivity.more » « less
-
The rheological behaviour of dense suspensions of ideally conductive particles in the presence of both electric field and shear flow is studied using large-scale numerical simulations. Under the action of an electric field, these particles are known to undergo dipolophoresis (DIP), which is the combination of two nonlinear electrokinetic phenomena: induced-charge electrophoresis (ICEP) and dielectrophoresis (DEP). For ideally conductive particles, ICEP is predominant over DEP, resulting in transient pairing dynamics. The shear viscosity and first and second normal stress differences$$N_1$$and$$N_2$$of such suspensions are examined over a range of volume fractions$$15\,\% \leq \phi \leq 50\,\%$$as a function of Mason number$$Mn$$, which measures the relative importance of viscous shear stress over electrokinetic-driven stress. For$$Mn < 1$$or low shear rates, the DIP is shown to dominate the dynamics, resulting in a relatively low-viscosity state. The positive$$N_1$$and negative$$N_2$$are observed at$$\phi < 30\,\%$$, which is similar to Brownian suspensions, while their signs are reversed at$$\phi \ge 30\,\%$$. For$$Mn \ge 1$$, the shear thickening starts to arise at$$\phi \ge 30\,\%$$, and an almost five-fold increase in viscosity occurs at$$\phi = 50\,\%$$. Both$$N_1$$and$$N_2$$are negative for$$Mn \gg 1$$at all volume fractions considered. We illuminate the transition in rheological behaviours from DIP to shear dominance around$$Mn = 1$$in connection to suspension microstructure and dynamics. Lastly, our findings reveal the potential use of nonlinear electrokinetics as a means of active rheology control for such suspensions.more » « less
-
The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric solution is examined in the limit of large particle aspect ratio,$$\kappa$$. A regular perturbation expansion in the polymer concentration,$$c$$, a generalized reciprocal theorem, and slender body theory to represent the velocity field of a Newtonian fluid around the spheroid are used to obtain the$$O(c)$$correction to the particle's orientational dynamics. The resulting dynamical system predicts a range of orientational behaviours qualitatively dependent upon$$c\, De$$($$De$$is the imposed shear rate times the polymer relaxation time) and$$\kappa$$and quantitatively on$$c$$. At a small but finite$$c\, De$$, the particle spirals towards a limit cycle near the vorticity axis for all initial conditions. Upon increasing$$\kappa$$, the limit cycle becomes smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small angle from the vorticity axis. At moderate$$c\, De$$, a particle starting near the flow–gradient plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller$$c\, De$$) obtains a saddle and an unstable node. The former is close to the flow direction. Upon further increasing$$c\, De$$, the saddle node changes to a stable node. Therefore, depending upon the initial condition, a particle may either approach a periodic orbit near the vorticity axis or obtain a stable orientation near the flow direction. Upon further increasing$$c\, De$$, the limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction for all starting orientations.more » « less
An official website of the United States government

