skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Escherichia coli cells are primed for survival before lethal antibiotic stress
ABSTRACT Non-genetic factors can cause significant fluctuations in gene expression levels. Regardless of growing in a stable environment, this fluctuation leads to cell-to-cell variability in an isogenic population. This phenotypic heterogeneity allows a tiny subset of bacterial cells in a population called persister cells to tolerate long-term lethal antibiotic effects by entering into a non-dividing, metabolically repressed state. We occasionally noticed a high variation in persister levels, and to explore this, we tested clonal populations starting from a single cell using a modified Luria-Delbrück fluctuation test. Although we kept the conditions same, the diversity in persistence level among clones was relatively consistent: varying from ~60- to 100- and ~40- to 70-fold for ampicillin and apramycin, respectively. Then, we divided and diluted each clone to observe whether the same clone had comparable persister levels for more than one generation. Replicates had similar persister levels even when clones were divided, diluted by 1:20, and allowed to grow for approximately five generations. This result explicitly shows a cellular memory passed on for generations and eventually lost when cells are diluted to 1:100 and regrown (>seven generations). Our result demonstrates (1) the existence of a small population prepared for stress (“primed cells”) resulting in higher persister numbers; (2) the primed memory state is reproducible and transient, passed down for generations but eventually lost; and (3) a heterogeneous persister population is a result of a transiently primed reversible cell state and not due to a pre-existing genetic mutation. IMPORTANCEAntibiotics have been highly effective in treating lethal infectious diseases for almost a century. However, the increasing threat of antibiotic resistance is again causing these diseases to become life-threatening. The longer a bacteria can survive antibiotics, the more likely it is to develop resistance. Complicating matters is that non-genetic factors can allow bacterial cells with identical DNA to gain transient resistance (also known as persistence). Here, we show that a small fraction of the bacterial population called primed cells can pass down non-genetic information (“memory”) to their offspring, enabling them to survive lethal antibiotics for a long time. However, this memory is eventually lost. These results demonstrate how bacteria can leverage differences among genetically identical cells formed through non-genetic factors to form primed cells with a selective advantage to survive antibiotics.  more » « less
Award ID(s):
2240028 1922542
PAR ID:
10492420
Author(s) / Creator(s):
; ;
Editor(s):
Pagliara, Stefano
Publisher / Repository:
ASM
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
11
Issue:
5
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    All the different forms of life on our planet – including animals, plants, fungi and bacteria – tend to grow, multiply and expand. This happens through a process called cell division, where one cell becomes two; two cells become four; four cells become eight; and so on. Each dividing cell passes on the same set of genetic instructions to its two daughter cells in the form of DNA. Its remaining contents, made up of a mixture of proteins, RNA and other chemicals, also get divided up equally between the two new cells. This division of cellular assets establishes a form of 'cellular memory', where daughter cells retain very similar properties to their ancestors, which helps them remain stable over time. Yet this memory can fade, and small changes in how a cell looks or acts can appear over many generations of cell division. This happens even when the exact same set of DNA-based genetic instructions have been passed down to daughter cells, confirming that other factors aside from DNA do influence cellular properties and can act to maintain them or introduce variation over time. Here, Vashistha, Kohram and Salman set out to understand how long cellular memory could be maintained in dividing E. coli bacteria. To do this, they created a technique to track cellular memory as it passed down from a single mother cell to two daughter cells over dozens of generations. Using this technique, Vashistha, Kohram and Salman found that some inherited elements, including cell size and the time cells took to divide, were maintained between mother and daughter cells for almost 10 generations. Other elements, such as the density of proteins inside each cell, started changing almost immediately after daughter cells were formed, and only remained similar for about two generations. These findings suggest that cellular memory may be long, but is not infinite, and that inheritance of non-genetic elements can help maintain cellular memory and reduce variation among new-born cells for considerable number of generations. Building on this research to achieve a better understanding of cellular memory may allow researchers to harness these insights to direct the evolution of different cellular properties over time. This could have a wide range of potential applications, such as designing new infection control measures for viruses or bacteria; enhancing our ability to grow working organs for tissue transplant; or improving the texture and consistency of cultured, lab-grown meat. 
    more » « less
  2. ABSTRACT Bacteria form complex multicellular structures on solid surfaces known as biofilms, which allow them to survive in harsh environments. A hallmark characteristic of mature biofilms is the high-level antibiotic tolerance (up to 1,000 times) compared with that of planktonic cells. Here, we report our new findings that biofilm cells are not always more tolerant to antibiotics than planktonic cells in the same culture. Specifically, Escherichia coli RP437 exhibited a dynamic change in antibiotic susceptibility during its early-stage biofilm formation. This phenomenon was not strain specific. Upon initial attachment, surface-associated cells became more sensitive to antibiotics than planktonic cells. By controlling the cell adhesion and cluster size using patterned E. coli biofilms, cells involved in the interaction between cell clusters during microcolony formation were found to be more susceptible to ampicillin than cells within clusters, suggesting a role of cell-cell interactions in biofilm-associated antibiotic tolerance. After this stage, biofilm cells became less susceptible to ampicillin and ofloxacin than planktonic cells. However, when the cells were detached by sonication, both antibiotics were more effective in killing the detached biofilm cells than the planktonic cells. Collectively, these results indicate that biofilm formation involves active cellular activities in adaption to the attached life form and interactions between cell clusters to build the complex structure of a biofilm, which can render these cells more susceptible to antibiotics. These findings shed new light on bacterial antibiotic susceptibility during biofilm formation and can guide the design of better antifouling surfaces, e.g., those with micron-scale topographic structures to interrupt cell-cell interactions. IMPORTANCE Mature biofilms are known for their high-level tolerance to antibiotics; however, antibiotic susceptibility of sessile cells during early-stage biofilm formation is not well understood. In this study, we aim to fill this knowledge gap by following bacterial antibiotic susceptibility during early-stage biofilm formation. We found that the attached cells have a dynamic change in antibiotic susceptibility, and during certain phases, they can be more sensitive to antibiotics than planktonic counterparts in the same culture. Using surface chemistry-controlled patterned biofilm formation, cell-surface and cell-cell interactions were found to affect the antibiotic susceptibility of attached cells. Collectively, these findings provide new insights into biofilm physiology and reveal how adaptation to the attached life form may influence antibiotic susceptibility of bacterial cells. 
    more » « less
  3. Antibiotic responses in bacteria are highly dynamic and heterogeneous, with sudden exposure of bacterial colonies to high drug doses resulting in the coexistence of recovered and arrested cells. The dynamics of the response is determined by regulatory circuits controlling the expression of resistance genes, which are in turn modulated by the drug’s action on cell growth and metabolism. Despite advances in understanding gene regulation at the molecular level, we still lack a framework to describe how feedback mechanisms resulting from the interdependence between expression of resistance and cell metabolism can amplify naturally occurring noise and create heterogeneity at the population level. To understand how this interplay affects cell survival upon exposure, we constructed a mathematical model of the dynamics of antibiotic responses that links metabolism and regulation of gene expression, based on the tetracycline resistancetetoperon inE. coli. We use this model to interpret measurements of growth and expression of resistance in microfluidic experiments, both in single cells and in biofilms. We also implemented a stochastic model of the drug response, to show that exposure to high drug levels results in large variations of recovery times and heterogeneity at the population level. We show that stochasticity is important to determine how nutrient quality affects cell survival during exposure to high drug concentrations. A quantitative description of how microbes respond to antibiotics in dynamical environments is crucial to understand population-level behaviors such as biofilms and pathogenesis. 
    more » « less
  4. The specificity of T cells is that each T cell has only one T cell receptor (TCR). A T cell clone represents a collection of T cells with the same TCR sequence. Thus, the number of different T cell clones in an organism reflects the number of different T cell receptors (TCRs) that arise from recombination of the V(D)J gene segments during T cell development in the thymus. TCR diversity and more specifically, the clone abundance distribution, are important factors in immune functions. Specific recombination patterns occur more frequently than others while subsequent interactions between TCRs and self-antigens are known to trigger proliferation and sustain naive T cell survival. These processes are TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation rates. We describe the heterogeneous steady-state population of naive T cells (those that have not yet been antigenically triggered) by using a mean-field model of a regulated birth-death-immigration process. After accounting for random sampling, we investigate how TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of clone abundance distributions (the number of different clones that are represented by a specific number of cells, or “clone counts”). By using reasonable physiological parameter values and fitting predicted clone counts to experimentally sampled clone abundances, we show that realistic levels of heterogeneity in immigration rates cause very little change to predicted clone-counts, but that modest heterogeneity in proliferation rates can generate the observed clone abundances. Our analysis provides constraints among physiological parameters that are necessary to yield predictions that qualitatively match the data. Assumptions of the model and potentially other important mechanistic factors are discussed. 
    more » « less
  5. Beard, Daniel A (Ed.)
    Antibiotic resistance poses mounting risks to human health, as current antibiotics are losing efficacy against increasingly resistant pathogenic bacteria. Of particular concern is the emergence of multidrug-resistant strains, which has been rapid among Gram-negative bacteria such asEscherichia coli. A large body of work has established that antibiotic resistance mechanisms depend on phenotypic heterogeneity, which may be mediated by stochastic expression of antibiotic resistance genes. The link between such molecular-level expression and the population levels that result is complex and multi-scale. Therefore, to better understand antibiotic resistance, what is needed are new mechanistic models that reflect single-cell phenotypic dynamics together with population-level heterogeneity, as an integrated whole. In this work, we sought to bridge single-cell and population-scale modeling by building upon our previous experience in “whole-cell” modeling, an approach which integrates mathematical and mechanistic descriptions of biological processes to recapitulate the experimentally observed behaviors of entire cells. To extend whole-cell modeling to the “whole-colony” scale, we embedded multiple instances of a whole-cellE.colimodel within a model of a dynamic spatial environment, allowing us to run large, parallelized simulations on the cloud that contained all the molecular detail of the previous whole-cell model and many interactive effects of a colony growing in a shared environment. The resulting simulations were used to explore the response ofE.colito two antibiotics with different mechanisms of action, tetracycline and ampicillin, enabling us to identify sub-generationally-expressed genes, such as the beta-lactamase ampC, which contributed greatly to dramatic cellular differences in steady-state periplasmic ampicillin and was a significant factor in determining cell survival. 
    more » « less