Abstract Existing phenotype ontologies were originally developed to represent phenotypes that manifest as a character state in relation to a wild-type or other reference. However, these do not include the phenotypic trait or attribute categories required for the annotation of genome-wide association studies (GWAS), Quantitative Trait Loci (QTL) mappings or any population-focussed measurable trait data. The integration of trait and biological attribute information with an ever increasing body of chemical, environmental and biological data greatly facilitates computational analyses and it is also highly relevant to biomedical and clinical applications. The Ontology of Biological Attributes (OBA) is a formalised, species-independent collection of interoperable phenotypic trait categories that is intended to fulfil a data integration role. OBA is a standardised representational framework for observable attributes that are characteristics of biological entities, organisms, or parts of organisms. OBA has a modular design which provides several benefits for users and data integrators, including an automated and meaningful classification of trait terms computed on the basis of logical inferences drawn from domain-specific ontologies for cells, anatomical and other relevant entities. The logical axioms in OBA also provide a previously missing bridge that can computationally link Mendelian phenotypes with GWAS and quantitative traits. The term components in OBA provide semantic links and enable knowledge and data integration across specialised research community boundaries, thereby breaking silos.
more »
« less
Trait-Based Research on Rotifera: The Holy Grail or Just Messy?
In recent years, trait-based research on plankton has gained interest because of its potential to uncover general roles in ecology. While trait categories for phytoplankton and crustaceans have been posited, rotifer trait assessment has lagged behind. Here, we reviewed the literature to assess traits key to their life histories and provided a data matrix for the 138 valid genera of phylum Rotifera. We considered seven traits: habitat type, trophi type, presence of lorica and foot, predation defense attributes, corona type, and feeding traits. While most traits were morphological attributes and supposedly easy to assess, we were faced with several challenges regarding trait assignment. Feeding traits were especially difficult to assess for many genera because relevant information was missing. Our assembled trait matrix provides a foundation that will initiate additional research on rotifer functional diversity, diminish the misclassification of rotifer genera into trait categories, and facilitate studies across trophic levels.
more »
« less
- Award ID(s):
- 2051710
- PAR ID:
- 10492500
- Editor(s):
- Manca, M.M. Granata
- Publisher / Repository:
- Water
- Date Published:
- Journal Name:
- Water
- Volume:
- 15
- Issue:
- 8
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 1459
- Subject(s) / Keyword(s):
- aquatic ecology functional ecology corona community dynamics food guild ratio functional groups rotifer trophi
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ecological traits have flourished in insect-based studies, resulting in a substantial and growing list of measurable traits. One trait that will likely become more attractive as data quality and curation improve is the diel patterns of insect activities. Diel patterns in ants can help better understand vital ecological processes such as competition and invasion biology. Because diel activity has the potential to be an informative trait in ants, we assessed the diel designations of foraging ants across the literature to quantify and assess the variation and sampling extent of this particular trait. We collected diel designations from 104 peer-reviewed scientific articles and quantified these data across important and documented ecological traits. We found that a disproportionate amount of solitary foraging ants were primarily diurnal foragers relative to ants that cooperatively forage. Our data show that diel patterns in foraging vary widely within and across ant genera. Importantly, we highlight the undersampling of this crucial ecological trait, which currently limits its utility. Our efforts highlight the importance of assessing an ecologically important trait’s landscape of reported data.more » « less
-
Abstract The impacts of urbanization on bird biodiversity depend on human–environment interactions that drive land management. Although a commonly studied group, less attention has been given to public perceptions of birds close to home, which can capture people's direct, everyday experiences with urban biodiversity. Here, we used ecological and social survey data collected in the metropolitan region of Phoenix, Arizona, USA, to determine how species traits are related to people's perceptions of local bird communities. We used a trait‐based approach to classify birds by attributes that may influence human–bird interactions, including color, size, foraging strata, diet, song, and cultural niche space based on popularity and geographic specificity. Our classification scheme using hierarchical clustering identified four trait categories, labeled as Metropolitan (gray, loud, seedeaters foraging low to ground), Familiar (yellow/brown generalist species commonly present in suburban areas), Distinctive (species with distinguishing appearance and song), and Hummingbird (hummingbird species, small and colorful). Strongly held beliefs about positive or negative traits were also more consistent than ambivalent ones. The belief that birds were colorful and unique to the regional desert environment was particularly important in fortifying perceptions. People largely perceived hummingbird species and birds with distinctive traits positively. Similarly, urban‐dwelling birds from the metropolitan trait group were related to negative perceptions, probably due to human–wildlife conflict. Differences arose across sociodemographics (including income, age, education, and Hispanic/Latinx identity), but explained a relatively low amount of variation in perceptions compared with the bird traits present in the neighborhood. Our results highlight how distinctive aesthetics, especially color and song, as well as traits related to foraging and diet drive perceptions. Increasing people's direct experiences with iconic species tied to the region and species with distinguishing attributes has the potential to improve public perceptions and strengthen support for broader conservation initiatives in and beyond urban ecosystems.more » « less
-
Abstract MotivationTrait‐based studies remain limited by the quality and scope of the underlying trait data available. Most of the existing trait databases treat species traits as fixed across time, with any potential temporal variation in the measured traits being unavailable. This is despite the fact that many species are well known to show plasticity in their trait characteristics over the course of the year. This data paper describes a compilation of species‐specific dietary preferences and their known intra‐annual variation for over 10,000 of the world's extant bird species (SAviTraits 1.0). Information on dietary preferences was obtained from the Cornell Lab of Ornithology Birds of the World (BOW) online database. Textual descriptions of species' dietary preferences were translated into semi‐quantitative information denoting the proportion of dietary categories utilized by each species. Temporal variation in dietary attributes was captured at a monthly temporal resolution. We describe the methods for data discovery and translation and present tools for summarizing the annual variability of avian dietary preferences. Altogether, we were able to document a seasonal variability in dietary attributes for a total of 1031 species (ca. 10%). For the remaining species, the dietary attributes were either temporally stationary or the information on temporal variability of the diet was not available. Main Types of Variable ContainedTemporally‐varying dietary traits for birds. Spatial Location and GrainN/A. Time Period and GrainVariation in diet was captured at a monthly temporal resolution. Major Taxa and Level of MeasurementBirds, species level. Software Format.csv/.rdsmore » « less
-
Abstract Functional traits of organisms, especially feeding traits, influence how organisms mediate ecosystem processes. As climate change, landscape modification and industrial waste heat release continue to increase water temperatures, shifts in the composition of feeding traits within aquatic macroinvertebrate communities may alter ecosystem processes. However, it is unclear whether thermal traits of macroinvertebrates vary systematically across functional feeding groups (FFGs; i.e., categories based on feeding ecology such as herbivores, shredders, predators, etc.) or phylogeny. We used previously published datasets on hundreds of macroinvertebrate taxa to evaluate how thermal traits differed across FFGs. We also examined the strength of phylogenetic signal in both FFG and thermal traits, using a new phylogeny of insect taxa. Then, we tested whether phylogenetic patterns offered a plausible explanation for differences in thermal traits among FFGs by comparing phylogenetic and non‐phylogenetic regressions. Shredders tended to have lower temperature preferences, optima and maxima (three of five of the thermal traits evaluated) than other FFGs. Patterns for other FFGs differed by thermal trait, but predators, collector‐gatherers and filterers had some of the highest thermal trait values. FFG explained 40% of the variation in critical thermal maximum, but <12% of the variation in the four other thermal traits. Phylogeny explained 26%–88% of the variation in thermal and feeding traits. For the subset of taxa and trait data that were available, phylogeny explained more than double the variation in thermal traits relative to FFG, but comparison of phylogenetic and non‐phylogenetic regressions highlighted that FFG explained variation in thermal traits that was independent of phylogeny. Our results highlight phylogeny and FFG as predictors of thermal traits in aquatic macroinvertebrates. Our results suggest that warmer water temperatures could favour predators, filterers and collector‐gatherers over shredders. Furthermore, our results confirm that certain orders of macroinvertebrates, such as Diptera, may be better suited to warmer temperatures than other orders, such as Plecoptera.more » « less
An official website of the United States government

