skip to main content

Title: Species traits explain public perceptions of human–bird interactions
Abstract

The impacts of urbanization on bird biodiversity depend on human–environment interactions that drive land management. Although a commonly studied group, less attention has been given to public perceptions of birds close to home, which can capture people's direct, everyday experiences with urban biodiversity. Here, we used ecological and social survey data collected in the metropolitan region of Phoenix, Arizona, USA, to determine how species traits are related to people's perceptions of local bird communities. We used a trait‐based approach to classify birds by attributes that may influence human–bird interactions, including color, size, foraging strata, diet, song, and cultural niche space based on popularity and geographic specificity. Our classification scheme using hierarchical clustering identified four trait categories, labeled as Metropolitan (gray, loud, seedeaters foraging low to ground), Familiar (yellow/brown generalist species commonly present in suburban areas), Distinctive (species with distinguishing appearance and song), and Hummingbird (hummingbird species, small and colorful). Strongly held beliefs about positive or negative traits were also more consistent than ambivalent ones. The belief that birds were colorful and unique to the regional desert environment was particularly important in fortifying perceptions. People largely perceived hummingbird species and birds with distinctive traits positively. Similarly, urban‐dwelling birds from the more » metropolitan trait group were related to negative perceptions, probably due to human–wildlife conflict. Differences arose across sociodemographics (including income, age, education, and Hispanic/Latinx identity), but explained a relatively low amount of variation in perceptions compared with the bird traits present in the neighborhood. Our results highlight how distinctive aesthetics, especially color and song, as well as traits related to foraging and diet drive perceptions. Increasing people's direct experiences with iconic species tied to the region and species with distinguishing attributes has the potential to improve public perceptions and strengthen support for broader conservation initiatives in and beyond urban ecosystems.

« less
Authors:
 ;  ;  ;  ;  ;  
Award ID(s):
1832016
Publication Date:
NSF-PAR ID:
10368834
Journal Name:
Ecological Applications
Volume:
32
Issue:
8
ISSN:
1051-0761
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Trait‐based studies remain limited by the quality and scope of the underlying trait data available. Most of the existing trait databases treat species traits as fixed across time, with any potential temporal variation in the measured traits being unavailable. This is despite the fact that many species are well known to show plasticity in their trait characteristics over the course of the year. This data paper describes a compilation of species‐specific dietary preferences and their known intra‐annual variation for over 10,000 of the world's extant bird species (SAviTraits 1.0). Information on dietary preferences was obtained from the Cornell Lab of Ornithology Birds of the World (BOW) online database. Textual descriptions of species' dietary preferences were translated into semi‐quantitative information denoting the proportion of dietary categories utilized by each species. Temporal variation in dietary attributes was captured at a monthly temporal resolution. We describe the methods for data discovery and translation and present tools for summarizing the annual variability of avian dietary preferences. Altogether, we were able to document a seasonal variability in dietary attributes for a total of 1031 species (ca. 10%). For the remaining species, the dietary attributes were either temporally stationary or the information on temporal variabilitymore »of the diet was not available.

    Main Types of Variable Contained

    Temporally‐varying dietary traits for birds.

    Spatial Location and Grain

    N/A.

    Time Period and Grain

    Variation in diet was captured at a monthly temporal resolution.

    Major Taxa and Level of Measurement

    Birds, species level.

    Software Format

    .csv/.rds

    « less
  2. Abstract

    Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.

  3. Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood-scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife-certified and water conservation) and two lawn-dominated yard types (high- and low-fertilizer application), and surrounding neighborhood-scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood-scale tree canopy cover and negatively associated withmore »impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high-fertilizer yards and highest in wildlife-certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife-friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.« less
  4. Abstract

    Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood‐scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife‐certified and water conservation) and two lawn‐dominated yard types (high‐ and low‐fertilizer application), and surrounding neighborhood‐scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood‐scale tree canopy cover and negatively associatedmore »with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high‐fertilizer yards and highest in wildlife‐certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife‐friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.

    « less
  5. vonHoldt, Bridgett (Ed.)
    Abstract The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs—which exhibit a stunning range of cryptic and conspicuous forms—inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and—increasingly—genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied—but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration ofmore »bare parts and eggs. We conclude by spotlighting 2 research areas—mechanistic links between color vision and color production, and speciation—that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.« less