skip to main content


This content will become publicly available on February 1, 2025

Title: Dual carbonate clumped isotope (Δ47-Δ48) measurements constrain different sources of kinetic isotope effects and quasi-equilibrium signatures in cave carbonates
Cave carbonate minerals are an important terrestrial paleoclimate archive. A few studies have explored the potential for applying carbonate clumped isotope thermometry to speleothems as a tool for constraining past temperatures. To date, most papers utilizing this method have focused on mass-47 clumped isotope values (Δ47) at a single location and reported that cave carbonate minerals rarely achieve isotopic equilibrium, with kinetic isotope effects (KIEs) attributed to CO2 degassing. More recently, studies have shown that mass-47 and mass-48 CO2 from acid digested carbonate minerals (Δ47 and Δ48) can be used together to assess equilibrium and probe KIEs. Here, we examined 44 natural and synthetic modern cave carbonate mineral samples from 13 localities with varying environmental conditions (ventilation, water level, pCO2, temperature) for (dis)equilibrium using Δ47-Δ48 values, in concert with traditional stable carbon (δ13C) and oxygen (δ18O) isotope ratios. Data showed that 19 of 44 samples exhibited Δ47-Δ48 values indistinguishable from isotopic equilibrium, and 18 (95 %) of these samples yield Δ47-predicted temperatures within error of measured modern temperatures. Conversely, 25 samples exhibited isotopic disequilibria, 13 of which yield erroneous temperature estimates. Within some speleothemsamples, we find Δ47-Δ48 values consistent with CO2 degassing effects, however, the majority of sampleswith KIEs are consistent with other processes being dominant. We hypothesize that these values reflect isotopicbuffering effects on clumped isotopes that can be considerable and cannot be overlooked. Using a Raleigh Distillation Model, we examined carbon and oxygen isotope exchange trajectories and their relationships with dual clumped isotope disequilibria. Carbon isotope exchange is associated with depletion of both Δ47 and Δ48 relative to equilibrium, while oxygen isotope exchange is associated with enrichment of both Δ47 and Δ48 relative to equilibrium. Cave rafts collected from proximate locations in Mexico exhibit the largest averagedepartures from equilibrium (ΔΔ47 = − 0.032 ± 0.007, ΔΔ48 = − 0.104 ± 0.035, where ΔΔi is the measured value – the equilibrium value). This study shows how the Δ47-Δ48 dual carbonate clumped isotope framework can be applied to a variety of tcave carbonate mineral samples, enabling identification of isotopic equilibria and therefore quantitative application of clumped isotope thermometry for paleoclimate reconstruction, or alternatively, constraining the mechanisms of kinetic effects.  more » « less
Award ID(s):
1804262 1806090 2103129
NSF-PAR ID:
10492521
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
Volume:
366
Issue:
C
ISSN:
0016-7037
Page Range / eLocation ID:
95 to 112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δiis a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δivalues measured by mass spectrometry (Δ47, Δ48) or laser spectroscopy (Δ638) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δivalues that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals. ▪ Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments. ▪ Mature analytical methods enable carbonate clumped Δ47, Δ48, and Δ638measurements to address diverse questions in geological and biological sciences. ▪ These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies.

     
    more » « less
  2. Stalagmites are an important archive of terrestrial climate information. However, there remains questions about the ability of stalagmites to form in oxygen isotopic equilibrium and thus record, in a simple manner, the oxygen isotopic composition and temperature of formational fluids. Recent studies have suggested that the combined application of 48 and 47 carbonate clumped isotope measurements can quantify the extent of kinetic isotope fractionation in stalagmites and thus used to correct for these kinetic isotope effects and solve for the original formation temperatures. Here we measure the 47 and 48 values from 16 different samples of the same stalagmite from central California that spans the deglaciation (11 to 20 kya). Each sample is replicated three to five times. We find that based on these measurements the extent of kinetic fractionation present in the carbonate from this stalagmite is minimal. The temperature calculated from 47 in this stalagmite ranges from 11.6 to 19.9 °C, in agreement with regional reconstructions of temperatures from 47 values of lake carbonates. In contrast, previously published the 18O and 2H values of inclusion fluids (Wortham et al., 2022) from this stalagmite suggest periods of increasing kinetic fractionation of the water isotopes at 13 and 15 ka. These periods have been previously interpreted to be times of a reduction in effective moisture regionally. We suggest by this comparison that the use of both water isotopes and the dual clumped isotope system in stalagmites can aide the interpretation of where kinetic fractionation occurs in the hydrologic and carbonate precipitation system in caves. We will discuss the work’s implications for paleoclimate records from stalagmites and other terrestrial systems in seasonally dry and Mediterranean regions. 
    more » « less
  3. Abstract

    Most Earth surface carbonates precipitate out of isotopic equilibrium with their host solution, complicating the use of stable isotopes in paleoenvironment reconstructions. Disequilibrium can arise from exchange reactions in the DIC‐H2O system as well as during crystal growth reactions in the DIC‐CaCO3system. Existing models account for kinetic isotope effects (KIEs) in these systems separately but the models have yet to be combined in a general framework. Here, an open‐system box model is developed for describing disequilibrium carbon, oxygen, and clumped (Δ47, Δ48, and Δ49) isotope effects in the CaCO3‐DIC‐H2O system. The model is used to simulate calcite precipitation experiments in which the fluxes and isotopic compositions of CO2and CaCO3were constrained. Using a literature compilation of equilibrium and kinetic fractionation factors, modeledδ18O and Δ47values of calcite are in good agreement with the experimental data covering a wide range in crystal growth rate and solution pH. This relatively straightforward example provides a foundation for adapting the model to other situations involving CO2absorption (e.g., corals, foraminifera, and high‐pH travertines) or degassing (e.g., speleothems, low‐pH travertines, and cryogenic carbonates) and/or mixing with other dissolved inorganic carbon sources.

     
    more » « less
  4. Abstract

    Increased use and improved methodology of carbonate clumped isotope thermometry has greatly enhanced our ability to interrogate a suite of Earth‐system processes. However, interlaboratory discrepancies in quantifying carbonate clumped isotope (Δ47) measurements persist, and their specific sources remain unclear. To address interlaboratory differences, we first provide consensus values from the clumped isotope community for four carbonate standards relative to heated and equilibrated gases with 1,819 individual analyses from 10 laboratories. Then we analyzed the four carbonate standards along with three additional standards, spanning a broad range of δ47and Δ47values, for a total of 5,329 analyses on 25 individual mass spectrometers from 22 different laboratories. Treating three of the materials as known standards and the other four as unknowns, we find that the use of carbonate reference materials is a robust method for standardization that yields interlaboratory discrepancies entirely consistent with intralaboratory analytical uncertainties. Carbonate reference materials, along with measurement and data processing practices described herein, provide the carbonate clumped isotope community with a robust approach to achieve interlaboratory agreement as we continue to use and improve this powerful geochemical tool. We propose that carbonate clumped isotope data normalized to the carbonate reference materials described in this publication should be reported as Δ47(I‐CDES) values for Intercarb‐Carbon Dioxide Equilibrium Scale.

     
    more » « less
  5. Abstract

    Tectonic mélanges, characterized by conditions reflective of modern subduction fault zones, preserve mineral veins formed through mass transfer, a mechanism influencing the slip behavior of subduction megathrusts. In this study, we apply secondary ion mass spectrometry quartz‐calcite oxygen isotope thermometry and clumped isotope thermometry to examine the temperatures of vein formations in six mélange units in the Cretaceous Shimanto belt and one mélange in the Kodiak accretionary prism. Calcite in the veins exhibits δ13CPDBvalues ranging from −17.2‰ to −6.8‰, indicative of a carbon source mixing with sedimentary carbonate and organic matter. δ18OSMOWvalues of calcite range from +11.1‰ to +17.2‰; quartz yields δ18OSMOWvalues of +14.9‰ to +21.7‰. Oxygen isotopic signatures in minerals reveal that most vein‐forming fluids are significantly affected by rock buffering, while some retain isotopic compositions of seawater and meteoric water. Temperature estimates, derived from both thermometers, fall within the range of 100–250°C. Notably, vein temperatures remain constant across diverse vein types and mélange units with distinct maximum temperatures. The combined temperature records and fluid isotopic compositions imply vein formations at shallower depths linked to the incorporation of seawater, meteoric water, and fluid released from early dehydration reactions. At greater depths, vein formations are associated with fluid released from clay dehydration and long‐distance fluid flow. Reduced vein formations between 250 and 350°C may correlate with a shift to fluid‐unsaturated conditions resulting from clay hydration reactions. Our study highlights potential mechanical and hydraulic variations within the thermal conditions of 100–350°C along the plate boundary driven by fluid‐mineral interactions.

     
    more » « less