skip to main content


Title: The AO327 Drift Survey Catalog and Data Release of Pulsar Detections
Abstract

The AO327 drift survey for radio pulsars and transients used the Arecibo telescope from 2010 until its collapse in 2020. AO327 collected ∼3100 hr of data at 327 MHz with a time resolution of 82μs and a frequency resolution of 24 kHz. While the main motivation for such surveys is the discovery of new pulsars and new, even unforeseen, types of radio transients, they also serendipitously collect a wealth of data on known pulsars. We present an electronic catalog of data and data products of 206 pulsars whose periodic emission was detected by AO327 and are listed in the Australia Telescope National Facility catalog of all published pulsars. The AO327 data products include dedispersed time series at full time resolution, average (“folded”) pulse profiles, Gaussian pulse profile templates, and an absolute phase reference that allows phase aligning the AO327 pulse profiles in a physically meaningful manner with profiles from data taken with other instruments. We also provide machine-readable tables with uncalibrated flux measurements at 327 MHz and pulse widths at 50% and 10% of the pulse peak determined from the fitted Gaussian profile templates. The AO327 catalog data set can be used in applications like population analysis of radio pulsars, pulse profile evolution studies in time and frequency, cone and core emission of the pulsar beam, scintillation, pulse intensity distributions, and others. It also constitutes a ready-made resource for teaching signal-processing and pulsar astronomy techniques.

 
more » « less
NSF-PAR ID:
10492561
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
271
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 23
Size(s):
["Article No. 23"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    This paper provides analyses of the emission beam structure of 76 ‘B’-named pulsars within the Arecibo sky. Most of these objects are included in both the Gould & Lyne and LOFAR High Band surveys and thus complement our other works treating various parts of these populations. These comprise a further group of mostly well-studied pulsars within the Arecibo sky that we here treat similarly to those in Olszanski et al. – and extend our overall efforts to study all of the pulsars in both surveys. The analyses are based on observations made with the Arecibo Telescope at 327 MHz and 1.4 GHz. Many have been observed at frequencies down to 100 MHz using either LOFAR or the Pushchino Radio Astronomy Observatory as well as a few with the Long Wavelength Array at lower frequencies. This work uses the Arecibo observations as a foundation for interpreting the low frequency profiles and emission-beam geometries. We attempt to build quantitative geometric emission-beam models using the core/double-cone topology, while reviewing the evidence of previous studies and arguments for previous classifications on these sources. These efforts were successful for all but two pulsars, and interesting new subpulse modulation patterns were identified in a number of the objects. We interpret the Arecibo pulsar population in the context of the entire population of ‘B’ pulsars.

     
    more » « less
  2. ABSTRACT

    We present the first 2.5 yr of data from the MeerKAT Pulsar Timing Array (MPTA), part of MeerTime, a MeerKAT Large Survey Project. The MPTA aims to precisely measure pulse arrival times from an ensemble of 88 pulsars visible from the Southern hemisphere, with the goal of contributing to the search, detection, and study of nanohertz-frequency gravitational waves as part of the International Pulsar Timing Array. This project makes use of the MeerKAT telescope and operates with a typical observing cadence of 2 weeks using the L-band receiver that records data from 856 to 1712 MHz. We provide a comprehensive description of the observing system, software, and pipelines used and developed for the MeerTime project. The data products made available as part of this data release are from the 78 pulsars that had at least 30 observations between the start of the MeerTime programme in February 2019 and October 2021. These include both sub-banded and band-averaged arrival times and the initial timing ephemerides, noise models, and the frequency-dependent standard templates (portraits) used to derive pulse arrival times. After accounting for detected noise processes in the data, the frequency-averaged residuals of 67 of the pulsars achieved a root-mean-square residual precision of $\lt 1 \, \mu \rm {s}$. We also present a novel recovery of the clock correction waveform solely from pulsar timing residuals and an exploration into preliminary findings of interest to the international pulsar timing community. The arrival times, standards, and full Stokes parameter-calibrated pulsar timing archives are publicly available.

     
    more » « less
  3. ABSTRACT

    We present radio pulsar emission beam analyses and models with the primary intent of examining pulsar beam geometry and physics over the broadest band of radio frequencies reasonably obtainable. We consider a set of well-studied pulsars that lie within the Arecibo sky. These pulsars stand out for the broad frequency range over which emission is detectable, and have been extensively observed at frequencies up to 4.5 GHz and down to below 100 MHz. We utilize published profiles to quantify a more complete picture of the frequency evolution of these pulsars using the core/double-cone emission beam model as our classification framework. For the low-frequency observations, we take into account measured scattering time-scales to infer intrinsic versus scatter broadening of the pulse profile. Lastly, we discuss the populational trends of the core/conal class profiles with respect to intrinsic parameters. We demonstrate that for this subpopulation of pulsars, core and conal dominated profiles cluster together into two roughly segregated $P{\!-\!}\dot{P}$ populations, lending credence to the proposal that an evolution in the pair-formation geometries is responsible for core/conal emission and other emission effects such as nulling and mode changing.

     
    more » « less
  4. Abstract We present an analysis of a densely repeating sample of bursts from the first repeating fast radio burst, FRB 121102. We reanalyzed the data used by Gourdji et al. and detected 93 additional bursts using our single-pulse search pipeline. In total, we detected 133 bursts in three hours of data at a center frequency of 1.4 GHz using the Arecibo telescope, and develop robust modeling strategies to constrain the spectro-temporal properties of all of the bursts in the sample. Most of the burst profiles show a scattering tail, and burst spectra are well modeled by a Gaussian with a median width of 230 MHz. We find a lack of emission below 1300 MHz, consistent with previous studies of FRB 121102. We also find that the peak of the log-normal distribution of wait times decreases from 207 to 75 s using our larger sample of bursts, as compared to that of Gourdji et al. Our observations do not favor either Poissonian or Weibull distributions for the burst rate distribution. We searched for periodicity in the bursts using multiple techniques, but did not detect any significant period. The cumulative burst energy distribution exhibits a broken power-law shape, with the lower- and higher-energy slopes of −0.4 ± 0.1 and −1.8 ± 0.2, with the break at (2.3 ± 0.2) × 10 37 erg. We provide our burst fitting routines as a Python package burstfit 4 4 https://github.com/thepetabyteproject/burstfit that can be used to model the spectrogram of any complex fast radio burst or pulsar pulse using robust fitting techniques. All of the other analysis scripts and results are publicly available. 5 5 https://github.com/thepetabyteproject/FRB121102 
    more » « less
  5. null (Ed.)
    ABSTRACT We report the result of measurements of a gradual shift of the integrated pulses towards later spin phase of the anomalous pulsar B0943+10 at high radio frequencies. We have used observations from the Arecibo Observatory and the GMRT at 327 and 325 MHz correspondingly. For the measurements, we have proposed a special method for calculating the correct positions of the partially merged two components of the pulse profile shape with significant temporal changes in their amplitude ratio. The exponential change in the pulse phase with an amplitude of 4 ms and characteristic time of about 1 h has been found. Comparison of our measurements at 325 and 327 MHz with those at the lower frequencies of 25–80, 62 and 112 MHz have shown that the character of the process does not depend on frequency across a wide frequency range. The result is very important for constraining the nature of the delay. It supports the assumption that the process results from changes in the vacuum gap near the surface of the pulsar. The further correlation between changes in the pulse phase and its intensity is discussed. 
    more » « less