In an era of anthropogenically altered disturbance regimes and increased nutrient loads, understanding how communities respond to these perturbations is essential for successful habitat restoration. Disturbance and resource supply can affect community diversity by altering community assembly processes, such as recruitment, mortality or competitive inequalities. The mechanisms behind community responses to these drivers will differentially affect multiple facets of diversity. Here we examine how factorial manipulations of disturbance (raking to remove above‐ground vegetation) and nitrogen supply affect taxonomic and phylogenetic diversity of predominantly annual California grassland communities spanning a 500‐km latitudinal and twofold rainfall gradient. The disturbance caused density‐independent biomass removal and increased access to resources such as space and light, thus mimicking demographic effects of disturbance as considered in ecological models and broadly applicable to empirical systems. We used paired metrics of richness, evenness and community composition to compare evidence from taxonomy and phylogeny. Disturbance increased species and phylogenetic diversity (richness and evenness metrics). However, nitrogen addition interacted with disturbance to reduce species richness and phylogenetic diversity. Undisturbed communities were more strongly clustered phylogenetically, but disturbance eroded this clustering such that communities became more random (i.e. indistinguishable from a null model of assembly). Species composition differed between disturbed and undisturbed communities, and many species were observed in only one community type. Disturbance interacted with nitrogen supply to alter phylogenetic composition of communities, and recently disturbed communities were more spatially variable in phylogenetic composition than undisturbed communities. Phylogenetic composition of communities also differed among nitrogen treatments.
This content will become publicly available on February 25, 2025
Rates at which a community recovers after disturbance, or its resilience, can be accelerated by increased net primary productivity and recolonization dynamics such as recruitment. These mechanisms can vary across biogeographic gradients, such as latitude, suggesting that biogeography is likely important to predicting resilience. To test whether community resilience, informed by functional and compositional recovery, hinges on geographic location, we employed a standardized replicated experiment on marine invertebrate communities across four regions from the tropics to the subarctic zone. Communities assembled naturally on standardized substrate while experiencing distinct levels of biomass removal (no removal, low disturbance, and high disturbance), which opened space for new colonizers, thereby providing a pulse of limited resource to these communities. We then quantified functional (space occupancy and biomass) and compositional recovery from these repeated pulse disturbances across two community assembly timescales (early and late at 3 and 12 months, respectively). We documented latitudinal variation in resilience across 47° latitude, where speed of functional recovery was higher toward lower latitudes yet incomplete at late assembly in the tropics and subtropics. The degree of functional recovery did not coincide with compositional recovery, and regional differences in recruitment and growth likely contributed to functional recovery in these communities. While biogeographic variation in community resilience has been predicted, our results are among the first to examine functional and compositional recovery from disturbance in a single large‐scale standardized experiment.
more » « less- NSF-PAR ID:
- 10492572
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Synthesis. Our results suggest that disturbing these grassland communities by removing above‐ground vegetation increased community diversity by increasing recruitment. Seed addition following this type of disturbance is thus likely to be an effective restoration technique. However, we have shown that disturbance combined with nitrogen enrichment reduces community diversity. The mechanism for this enrichment effect does not appear to be linked to increased productivity leading to light limitation. This work suggests restoration efforts employing biomass removal must take nutrient availability into account to maximize local community diversity. -
Abstract The hypothesis that biotic interactions are stronger at lower relative to higher latitudes has a rich history, drawing from ecological and evolutionary theory. While this hypothesis suggests that stronger interactions at lower latitudes may contribute to the maintenance of contemporary patterns of diversity, there remain few standardized biogeographic comparisons of community effects of species interactions.
Using marine seagrasses as a focal ecosystem of conservation importance and sessile marine invertebrates as model prey, we tested the hypothesis that predation is stronger at lower latitudes and can shape contemporary patterns of prey diversity. To further advance understanding beyond prior studies, we also explored mechanisms that likely underlie a change in interaction outcomes with latitude.
Multiple observational and experimental approaches were employed to test for effects of predators, and the mechanisms that may underlie these effects, in seagrass ecosystems of the western Atlantic Ocean spanning 30° of latitude from the temperate zone to the tropics.
In predator exclusion experiments conducted in a temperate and a tropical region, predation decreased sessile invertebrate abundance, richness and diversity on both natural and standardized artificial seagrass at tropical but not temperate sites. Further, predation reduced invertebrate richness at both local and regional scales in the tropics. Additional experiments demonstrated that predation reduced invertebrate recruitment in the tropics but not the temperate zone. Finally, direct observations of predators showed higher but variable consumption rates on invertebrates at tropical relative to temperate latitudes.
Together, these results demonstrate that strong predation in the tropics can have consequential impacts on prey communities through discrete effects on early life stages as well as longer‐term cumulative effects on community structure and diversity. Our detailed experiments also provide some of the first data linking large‐scale biogeographic patterns, community‐scale interaction outcomes and direct observation of predators in the temperate zone and tropics. Therefore, our results support the hypothesis that predation is stronger in the tropics, but also elucidate some of the causes and consequences of this variation in shaping contemporary patterns of diversity.
-
While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass ( Zostera marina ) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions and historical contingency shape these responses. Community trait distributions have implications for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions and traits can help us predict how communities may respond to environmental change.more » « less
-
To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic variation, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities.more » « less
-
Abstract Coastal systems experience frequent disturbance and multiple environmental stressors over short spatial and temporal scales. Investigating functional traits in coastal systems has the potential to inform how variation in disturbance frequency and environmental variables influence differences in trait‐based community composition and ecosystem function. Our goals were to (1) quantify trait‐based communities on two barrier islands divergent in topography and long‐term disturbance response and (2) determine relationships between community trait‐based composition and ecosystem productivity. We hypothesized that locations documented with high disturbance would have habitats with similar environmental conditions and trait‐based communities, with the opposite relationship in low‐disturbance locations. Furthermore, we expected higher productivity and lower site‐to‐site variation with low disturbance. Functional traits, biomass, and environmental metrics (soil salinity, elevation, and distance to shoreline) were collected and analyzed for two habitat types (dune and swale) on two Virginia barrier islands. Our results show that trait‐based community composition differed among habitat types and was related to disturbance. Habitats exhibited more similarity on the high‐disturbance island in both trait‐based composition and environmental variables. Conversely, the low‐disturbance island habitats were more dissimilar. We found the habitat with the lowest disturbance had the highest ecosystem productivity and had trait‐based communities indicative of highly competitive environments, while the high‐disturbance trait‐based communities were influenced by traits that indicate rapid recovery and growth. Site‐to‐site variation was similar in all dune habitats but differed among inter‐island swale habitats that varied in disturbance. These results highlight the importance of incorporating trait‐based analyses when approaching questions about community structure and ecosystem productivity in disturbance‐mediated habitats, such as coastal systems.