skip to main content


This content will become publicly available on February 25, 2025

Title: Speed and degree of functional and compositional recovery varies with latitude and community age
Abstract

Rates at which a community recovers after disturbance, or its resilience, can be accelerated by increased net primary productivity and recolonization dynamics such as recruitment. These mechanisms can vary across biogeographic gradients, such as latitude, suggesting that biogeography is likely important to predicting resilience. To test whether community resilience, informed by functional and compositional recovery, hinges on geographic location, we employed a standardized replicated experiment on marine invertebrate communities across four regions from the tropics to the subarctic zone. Communities assembled naturally on standardized substrate while experiencing distinct levels of biomass removal (no removal, low disturbance, and high disturbance), which opened space for new colonizers, thereby providing a pulse of limited resource to these communities. We then quantified functional (space occupancy and biomass) and compositional recovery from these repeated pulse disturbances across two community assembly timescales (early and late at 3 and 12 months, respectively). We documented latitudinal variation in resilience across 47° latitude, where speed of functional recovery was higher toward lower latitudes yet incomplete at late assembly in the tropics and subtropics. The degree of functional recovery did not coincide with compositional recovery, and regional differences in recruitment and growth likely contributed to functional recovery in these communities. While biogeographic variation in community resilience has been predicted, our results are among the first to examine functional and compositional recovery from disturbance in a single large‐scale standardized experiment.

 
more » « less
NSF-PAR ID:
10492572
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hypothesis that biotic interactions are stronger at lower relative to higher latitudes has a rich history, drawing from ecological and evolutionary theory. While this hypothesis suggests that stronger interactions at lower latitudes may contribute to the maintenance of contemporary patterns of diversity, there remain few standardized biogeographic comparisons of community effects of species interactions.

    Using marine seagrasses as a focal ecosystem of conservation importance and sessile marine invertebrates as model prey, we tested the hypothesis that predation is stronger at lower latitudes and can shape contemporary patterns of prey diversity. To further advance understanding beyond prior studies, we also explored mechanisms that likely underlie a change in interaction outcomes with latitude.

    Multiple observational and experimental approaches were employed to test for effects of predators, and the mechanisms that may underlie these effects, in seagrass ecosystems of the western Atlantic Ocean spanning 30° of latitude from the temperate zone to the tropics.

    In predator exclusion experiments conducted in a temperate and a tropical region, predation decreased sessile invertebrate abundance, richness and diversity on both natural and standardized artificial seagrass at tropical but not temperate sites. Further, predation reduced invertebrate richness at both local and regional scales in the tropics. Additional experiments demonstrated that predation reduced invertebrate recruitment in the tropics but not the temperate zone. Finally, direct observations of predators showed higher but variable consumption rates on invertebrates at tropical relative to temperate latitudes.

    Together, these results demonstrate that strong predation in the tropics can have consequential impacts on prey communities through discrete effects on early life stages as well as longer‐term cumulative effects on community structure and diversity. Our detailed experiments also provide some of the first data linking large‐scale biogeographic patterns, community‐scale interaction outcomes and direct observation of predators in the temperate zone and tropics. Therefore, our results support the hypothesis that predation is stronger in the tropics, but also elucidate some of the causes and consequences of this variation in shaping contemporary patterns of diversity.

     
    more » « less
  2. ABSTRACT

    Tropical forests harbour the highest levels of terrestrial biodiversity and represent some of the most complex ecosystems on Earth, with a significant portion of this diversity above ground. Although the vertical dimension is a central aspect of the ecology of forest communities, there is little consensus as to prominence, evenness, and consistency of community‐level stratification from ground to canopy. Here, we gather the results of 62 studies across the tropics to synthesise and assess broad patterns of vertical stratification of abundance and richness in vertebrates, the best studied taxonomic group for which results have not been collated previously. Our review of the literature yielded sufficient data for bats, small mammals, birds and amphibians. We show that variation in the stratification of abundance and richness exists within and among all taxa considered. Bat richness stratification was variable among studies, although bat abundance was weighted towards the canopy. Both bird richness and abundance stratification were variable, with no overriding pattern. On the contrary, both amphibians and small mammals showed consistent patterns of decline in abundance and richness towards the canopy. We descriptively characterise research trends in drivers of stratification cited or investigated within studies, finding local habitat structure and food distribution/foraging to be the most commonly attributed drivers. Further, we analyse the influence of macroecological variables on stratification patterns, finding latitude and elevation to be key predictors of bird stratification in particular. Prominent differences among taxa are likely due to taxon‐specific interactions with local drivers such as vertical habitat structure, food distribution, and vertical climate gradients, which may vary considerably across macroecological gradients such as elevation and biogeographic realm. Our study showcases the complexity with which animal communities organise within tropical forest ecosystems, while demonstrating the canopy as a critical niche space for tropical vertebrates, thereby highlighting the inherent vulnerability of tropical vertebrate communities to forest loss and canopy disturbance. We recognise that analyses were constrained due to variation in study designs and methods which produced a variety of abundance and richness metrics recorded across different arrangements of vertical strata. We therefore suggest the application of best practices for data reporting and highlight the significant effort required to fill research gaps in terms of under‐sampled regions, taxa, and environments.

     
    more » « less
  3. Abstract

    In an era of anthropogenically altered disturbance regimes and increased nutrient loads, understanding how communities respond to these perturbations is essential for successful habitat restoration. Disturbance and resource supply can affect community diversity by altering community assembly processes, such as recruitment, mortality or competitive inequalities. The mechanisms behind community responses to these drivers will differentially affect multiple facets of diversity.

    Here we examine how factorial manipulations of disturbance (raking to remove above‐ground vegetation) and nitrogen supply affect taxonomic and phylogenetic diversity of predominantly annual California grassland communities spanning a 500‐km latitudinal and twofold rainfall gradient. The disturbance caused density‐independent biomass removal and increased access to resources such as space and light, thus mimicking demographic effects of disturbance as considered in ecological models and broadly applicable to empirical systems. We used paired metrics of richness, evenness and community composition to compare evidence from taxonomy and phylogeny.

    Disturbance increased species and phylogenetic diversity (richness and evenness metrics). However, nitrogen addition interacted with disturbance to reduce species richness and phylogenetic diversity. Undisturbed communities were more strongly clustered phylogenetically, but disturbance eroded this clustering such that communities became more random (i.e. indistinguishable from a null model of assembly). Species composition differed between disturbed and undisturbed communities, and many species were observed in only one community type. Disturbance interacted with nitrogen supply to alter phylogenetic composition of communities, and recently disturbed communities were more spatially variable in phylogenetic composition than undisturbed communities. Phylogenetic composition of communities also differed among nitrogen treatments.

    Synthesis.Our results suggest that disturbing these grassland communities by removing above‐ground vegetation increased community diversity by increasing recruitment. Seed addition following this type of disturbance is thus likely to be an effective restoration technique. However, we have shown that disturbance combined with nitrogen enrichment reduces community diversity. The mechanism for this enrichment effect does not appear to be linked to increased productivity leading to light limitation. This work suggests restoration efforts employing biomass removal must take nutrient availability into account to maximize local community diversity.

     
    more » « less
  4. Abstract Aims

    Latitudinal gradients in plant communities are well studied, yet how these fundamental ecological patterns influence ecosystem recovery after extreme weather events remains largely unknown. In coastal foredunes, we investigated how the cover of a key dune‐building grass (Uniola paniculata), vegetation diversity and vegetation cover vary along a short latitudinal gradient during recovery from hurricane disturbance.

    Location

    Southeastern USA.

    Methods

    We surveyed 24 sites, from central Florida to north Georgia (>400 km), four times over 18 months. General linear mixed‐effect models were used to unravel patterns of vegetation responses across latitude.

    Results

    Vegetation properties showed countervailing patterns across the latitudinal gradient. While vegetation richness, functional diversity and total cover generally declined,Uniolacover increased with increasing latitude. Further, the latitude–richness relationship strengthened while the latitude–functional diversity relationship was invariant with increasing time since the hurricane disturbance. Meanwhile, the latitude–Uniolaassociation was seasonally dependent and strongest in the summer. Latitude also influenced diversity–cover relationships: vegetation cover was positively related to species richness at lower latitudes, while it was positively associated with functional diversity only at northern sites. We found no relationship between species richness or functional diversity and increases in cover between time steps; however, recruitment of new species and functional groups was associated with increases in vegetation cover between time steps at northern sites.

    Conclusions

    Our study highlights the temporal dynamism and contrasting patterns along latitudinal gradients exhibited by key engineering species and overall plant diversity in foredunes — a crucial line of coastal protection — exposed to hurricane disturbances. These results suggest a need for greater integration of latitudinal and diversity effects into our understanding of coastal dune resilience. They also highlight the potential benefits of enhancing dune plant biodiversity, particularly in areas where the dune‐building grasses that are classically employed in restoration (e.g.,Uniola) are unfavoured, to accelerate the re‐establishment of well‐vegetated dunes.

     
    more » « less
  5. Abstract Background

    Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil).

    Results

    To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community.

    Conclusions

    Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.

     
    more » « less