skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Possible Hysteresis in the Arctic Ocean due to Release of Subsurface Heat during Sea Ice Retreat
Abstract The Arctic Ocean is characterized by an ice-covered layer of cold and relatively fresh water above layers of warmer and saltier water. It is estimated that enough heat is stored in these deeper layers to melt all the Arctic sea ice many times over, but they are isolated from the surface by a stable halocline. Current vertical mixing rates across the Arctic Ocean halocline are small, due in part to sea ice reducing wind–ocean momentum transfer and damping internal waves. However, recent observational studies have argued that sea ice retreat results in enhanced mixing. This could create a positive feedback whereby increased vertical mixing due to sea ice retreat causes the previously isolated subsurface heat to melt more sea ice. Here, we use an idealized climate model to investigate the impacts of such a feedback. We find that an abrupt “tipping point” can occur under global warming, with an associated hysteresis window bounded by saddle-node bifurcations. We show that the presence and magnitude of the hysteresis are sensitive to the choice of model parameters, and the hysteresis occurs for only a limited range of parameters. During the critical transition at the bifurcation point, we find that only a small percentage of the heat stored in the deep layer is released, although this is still enough to lead to substantial sea ice melt. Furthermore, no clear relationship is apparent between this change in heat storage and the level of hysteresis when the parameters are varied.  more » « less
Award ID(s):
2048590
PAR ID:
10492817
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
53
Issue:
5
ISSN:
0022-3670
Page Range / eLocation ID:
1323 to 1335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Arctic climate is changing rapidly, with dramatic sea ice declines and increasing upper‐ocean heat content. While oceanic heat has historically been isolated from the sea ice by weak vertical mixing, it has been hypothesized that a reduced ice pack will increase energy transfer from the wind into the internal wave (IW) field, enhancing mixing and accelerating ice melt. We evaluate this positive ice/internal‐wave feedback using a finescale parameterization to estimate dissipation, a proxy for the energy available for IW‐driven mixing, from pan‐Arctic hydrographic profiles over 18 years. We find that dissipation has nearly doubled in summer in some regions. Associated heat fluxes have risen by an order of magnitude, underpinned by increases in the strength and prevalence of IW‐driven mixing. While the impact of the ice/internal‐wave feedback will likely remain negligible in the western Arctic, sea‐ice melt in the eastern Arctic appears vulnerable to the feedback strengthening. 
    more » « less
  2. Abstract The Arctic seasonal halocline impacts the exchange of heat, energy, and nutrients between the surface and the deeper ocean, and it is changing in response to Arctic sea ice melt over the past several decades. Here, we assess seasonal halocline formation in 1975 and 2006–12 by comparing daily, May–September, salinity profiles collected in the Canada Basin under sea ice. We evaluate differences between the two time periods using a one-dimensional (1D) bulk model to quantify differences in freshwater input and vertical mixing. The 1D metrics indicate that two separate factors contribute similarly to stronger stratification in 2006–12 relative to 1975: 1) larger surface freshwater input and 2) less vertical mixing of that freshwater. The larger freshwater input is mainly important in August–September, consistent with a longer melt season in recent years. The reduced vertical mixing is mainly important from June until mid-August, when similar levels of freshwater input in 1975 and 2006–12 are mixed over a different depth range, resulting in different stratification. These results imply that decadal changes to ice–ocean dynamics, in addition to freshwater input, significantly contribute to the stronger seasonal stratification in 2006–12 relative to 1975. These findings highlight the need for near-surface process studies to elucidate the impact of lateral processes and ice–ocean momentum exchange on vertical mixing. Moreover, the results may provide insight for improving the representation of decadal changes to Arctic upper-ocean stratification in climate models that do not capture decadal changes to vertical mixing. 
    more » « less
  3. Abstract. The melt of snow and sea ice during the Arctic summer is a significant source of relatively fresh meltwater in the central Arctic. The fate of this freshwater – whether in surface melt ponds, or thin layers underneath the ice and in leads – impacts atmosphere-ice-ocean interactions and their subsequent coupled evolution. Here, we combine analyses of datasets from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition (June–July, 2020) to understand the key drivers of the sea ice freshwater budget in the Central Arctic and the fate of this water over time. Freshwater budget analyses suggest that a relatively high fraction (58 %) is derived from surface melt. Additionally, the contribution from stored precipitation (snowmelt) significantly outweighs by five times the input from in situ summer precipitation (rain). The magnitude and rate of local meltwater production are remarkably similar to that observed on the prior Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. A relatively small fraction (10 %) of freshwater from melt remains in ponds, which is higher on more deformed second-year ice compared to first-year ice later in the summer. Most meltwater drains via lateral and vertical drainage channels, with vertical drainage enabling storage of freshwater internally in the ice by freshening of brine channels. In the upper ocean, freshwater can accumulate in transient meltwater layers on the order of 10 cm to 1 m thick in leads and under the ice. The presence of such layers substantially impacts the coupled system by reducing bottom melt and allowing false bottom growth, reducing heat, nutrient and gas exchange, and influencing ecosystem productivity. Regardless, the majority fraction of freshwater from melt is inferred to be ultimately incorporated into upper ocean (75 %) or stored internally in the ice (14 %). Comparison of key source and sink terms with estimates from the CESM2 climate model suggest that simulated freshwater storage in melt ponds is dramatically underestimated. This suggests pond drainage terms should be investigated as a likely explanation. 
    more » « less
  4. Abstract A 15-yr duration record of mooring observations from the eastern (>70°E) Eurasian Basin (EB) of the Arctic Ocean is used to show and quantify the recently increased oceanic heat flux from intermediate-depth (~150–900 m) warm Atlantic Water (AW) to the surface mixed layer and sea ice. The upward release of AW heat is regulated by the stability of the overlying halocline, which we show has weakened substantially in recent years. Shoaling of the AW has also contributed, with observations in winter 2017–18 showing AW at only 80 m depth, just below the wintertime surface mixed layer, the shallowest in our mooring records. The weakening of the halocline for several months at this time implies that AW heat was linked to winter convection associated with brine rejection during sea ice formation. This resulted in a substantial increase of upward oceanic heat flux during the winter season, from an average of 3–4 W m −2 in 2007–08 to >10 W m −2 in 2016–18. This seasonal AW heat loss in the eastern EB is equivalent to a more than a twofold reduction of winter ice growth. These changes imply a positive feedback as reduced sea ice cover permits increased mixing, augmenting the summer-dominated ice-albedo feedback. 
    more » « less
  5. Abstract We compare the vertical hydrography of the Community Earth System Model Large Ensemble (CESM1‐LE) with observations from two specific periods: the Arctic Ice Dynamics Joint Experiment (AIDJEX; 1975–1976) and Ice‐Tethered Profilers (ITP; 2004–2018). A comparison between simulated and observed salinity and potential temperature profiles highlights two key model biases in all ensemble members: (a) an absence of Pacific Waters in the water column and (b) a slight deepening of the May mixed layer contrary to observations, which show a large reduction in the mixed‐layer depth and an increase in stratification over the same time period. We examine processes controlling the sea ice mass balance using a one‐dimensional vertical heat budget in the light of the model limitations implied by these two biases. Results indicate that remnant solar heat trapped beneath the halocline is mostly ventilated to the surface by mixing before the following melt season. Furthermore, we find that vertical advection associated with Ekman pumping has only a small effect on the vertical heat transport, even in early fall when the winds are strong and the pack ice is weak. Lastly, we estimate the impact of the missing Pacific Waters at 0.40 m of reduced winter ice growth. 
    more » « less