To understand patterns in CO2 partial pressure (PCO2) over time in wetlands’ surface water and porewater, we examined the relationship between PCO2 and land–atmosphere flux of CO2 at the ecosystem scale at 22 Northern Hemisphere wetland sites synthesized through an open call. Sites spanned 6 major wetland types (tidal, alpine, fen, bog, marsh, and prairie pothole/karst), 7 Köppen climates, and 16 different years. Ecosystem respiration (Reco) and gross primary production (GPP), components of vertical CO2 flux, were compared to PCO2, a component of lateral CO2 flux, to determine if photosynthetic rates and soil respiration consistently influence wetland surface and porewater CO2 concentrations across wetlands. Similar to drivers of primary productivity at the ecosystem scale, PCO2 was strongly positively correlated with air temperature (Tair) at most sites. Monthly average PCO2 tended to peak towards the middle of the year and was more strongly related to Reco than GPP. Our results suggest Reco may be related to biologically driven PCO2 in wetlands, but the relationship is site-specific and could be an artifact of differently timed seasonal cycles or other factors. Higher levels of discharge do not consistently alter the relationship between Reco and temperature normalized PCO2. This work synthesizes relevant data and identifies key knowledge gaps in drivers of wetland respiration.
more »
« less
Allequash Creek Wetland Half-Hourly Soil Porewater PCO2 2021
Dissolved CO2, also known as PCO2, was continuously measured in parts per million in soil porewater in a riverine fen in Northern Wisconsin near the eddy covariance flux tower positioned there, named the Allequash Creek Wetland Site (US-ALQ) on AmeriFlux. The site is also a North Temperate Lakes (NTL) LTER study site. This data package contains half-hourly averages of PCO2 from March 24th to October 25th, 2021. This data package is complete but data collection may be reinstated in the future.
more »
« less
- Award ID(s):
- 2025982
- PAR ID:
- 10492858
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. The Southern Ocean is highly under-sampled for the purpose of assessing total carbon uptake and its variability. Since this region dominates the mean global ocean sink for anthropogenic carbon, understanding temporal change is critical. Underway measurements of pCO2 collected as part of the Drake Passage Time-series (DPT) program that began in 2002 inform our understanding of seasonally changing air–sea gradients in pCO2, and by inference the carbon flux in this region. Here, we utilize available pCO2 observations to evaluate how the seasonal cycle, interannual variability, and long-term trends in surface ocean pCO2 in the Drake Passage region compare to that of the broader subpolar Southern Ocean. Our results indicate that the Drake Passage is representative of the broader region in both seasonality and long-term pCO2 trends, as evident through the agreement of timing and amplitude of seasonal cycles as well as trend magnitudes both seasonally and annually. The high temporal density of sampling by the DPT is critical to constraining estimates of the seasonal cycle of surface pCO2 in this region, as winter data remain sparse in areas outside of the Drake Passage. An increase in winter data would aid in reduction of uncertainty levels. On average over the period 2002–2016, data show that carbon uptake has strengthened with annual surface ocean pCO2 trends in the Drake Passage and the broader subpolar Southern Ocean less than the global atmospheric trend. Analysis of spatial correlation shows Drake Passage pCO2 to be representative of pCO2 and its variability up to several hundred kilometers away from the region. We also compare DPT data from 2016 and 2017 to contemporaneous pCO2 estimates from autonomous biogeochemical floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) so as to highlight the opportunity for evaluating data collected on autonomous observational platforms. Though SOCCOM floats sparsely sample the Drake Passage region for 2016–2017 compared to the Drake Passage Time-series, their pCO2 estimates fall within the range of underway observations given the uncertainty on the estimates. Going forward, continuation of the Drake Passage Time-series will reduce uncertainties in Southern Ocean carbon uptake seasonality, variability, and trends, and provide an invaluable independent dataset for post-deployment assessment of sensors on autonomous floats. Together, these datasets will vastly increase our ability to monitor change in the ocean carbon sink.more » « less
-
The goal of the proposed study is to establish an Arctic Observing Network (AON) for sea surface partial pressure of carbon dioxide (pCO2) and pH in the perennially ice-covered portion of the Arctic Ocean. The carbon cycle is of particular concern in the Arctic because it is unknown how carbon sources and sinks will change in response to warming and the reduction of summer sea ice cover, and whether these changes will lead to increased greenhouse gas accumulation in the atmosphere. Furthermore, the penetration of anthropogenic caron dioxide (CO2) into the Arctic Ocean is leading to acidification with potentially serious consequences for organisms. Little is known about pCO2 and the inorganic carbon cycle in the central Arctic Ocean because most measurement programs to date have focused on the Arctic shelves during the accessible summer period. The investigators propose to use an existing component of the Arctic Observing Network, the Ice-Tethered Profilers (ITP), as platforms for deployment of in situ pCO2 and pH sensors. ITPs are automated profiling systems distributed throughout the perennial Arctic ice pack that telemeter data back to shore: 44 ITPs have been deployed since 2004 and the project is currently slated to continue through 2013. In the proposed work, a total of 6 ITPs will be equipped with CO2 sensors and four of these will also have pH sensors. The sensors will be fixed on the ITP cable ~2-4 meters below the ice. Each unit will include additional sensors for dissolved O2, salinity, and photosynthetically available radiation (and in some cases chlorophyll-a fluorescence) and will be capable of making 12 measurements per day for at least one year. These data, available in near real-time on the ITP web site (www.whoi.edu/itp/), will lead to a better understanding of the Arctic Ocean's role in regulating greenhouse gases and how the ecology of the Arctic will change with warming and acidification. The investigators will also engage in outreach programs including public presentations, podcasts, and school visits. A portion of the budget is also dedicated to the development of a climate-change/ocean acidification exhibit to be displayed in the University of Montana's science museum. The exhibit will reside at the museum for three months, then visit over 15 rural and tribal communities annually over a three year period. Undergraduate students will be recruited to assist with the sensor testing and data analysis, gaining a higher level of technical knowledge than possible through a traditional degree program. These data were collected using in situ sensors for the partial pressure of CO2 (pCO2), pH, dissolved oxygen (DO), photosynthetically available radiation (PAR), temperature, salinity and depth. Sensors were deployed at ~6 meter depth on ice-tethered profilers, in collaboration with Woods Hole Oceanographic Institution (Rick Krishfield and John Toole). Data are available at the website http://www.whoi.edu/page.do?pid=20781.more » « less
-
Abstract. The coastal ocean is affected by an array of co-occurring biogeochemical andanthropogenic processes, resulting in substantial heterogeneity in waterchemistry, including carbonate chemistry parameters such as pH and partialpressure of CO2 (pCO2). To better understand coastal and estuarineacidification and air-sea CO2 fluxes, it is important to study baselinevariability and driving factors of carbonate chemistry. Using both discretebottle sample collection (2014–2020) and hourly sensor measurements(2016–2017), we explored temporal variability, from diel to interannualscales, in the carbonate system (specifically pH and pCO2) at theAransas Ship Channel located in the northwestern Gulf of Mexico. Using otherco-located environmental sensors, we also explored the driving factors ofthat variability. Both sampling methods demonstrated significant seasonalvariability at the location, with highest pH (lowest pCO2) in the winterand lowest pH (highest pCO2) in the summer. Significant diel variabilitywas also evident from sensor data, but the time of day with elevatedpCO2 and depressed pH was not consistent across the entire monitoringperiod, sometimes reversing from what would be expected from a biologicalsignal. Though seasonal and diel fluctuations were smaller than many otherareas previously studied, carbonate chemistry parameters were among the mostimportant environmental parameters for distinguishing between time of day andbetween seasons. It is evident that temperature, biological activity,freshwater inflow, and tide level (despite the small tidal range) are allimportant controls on the system, with different controls dominating atdifferent timescales. The results suggest that the controlling factors ofthe carbonate system may not be exerted equally on both pH and pCO2 ondiel timescales, causing separation of their diel or tidal relationshipsduring certain seasons. Despite known temporal variability on shortertimescales, discrete sampling was generally representative of the averagecarbonate system and average air-sea CO2 flux on a seasonal and annualbasis when compared with sensor data.more » « less
-
Alkenones are long-chain ketones produced by phytoplankton of the order Isochrysidales. They are widely used in reconstructing past sea surface temperatures, benefiting from their ubiquitous occurrence in the Cenozoic ocean. Carbon isotope fractionation (εp) between alkenones and dissolved inorganic carbon may also be used as a proxy for past atmospheric pCO2 and has provided continuous pCO2 estimates back to ca. 45 Ma. Here, an extended occurrence of alkenones from ca. 130 Ma is reported. We characterize the molecular structure and distribution of these Mesozoic alkenones and evaluate their potential phylogenetic relationship with Cenozoic alkenones. Using δ13C values of the C37 methyl alkenone (C37:2Me), the first alkenone-based pCO2 estimates for the Mesozoic are derived. These estimates suggest elevated pCO2 with a range of 548−4090 ppm (908 ppm median) during the super-greenhouse climate of the Early Cretaceous, in agreement with phytane-based pCO2 reconstructions. Finally, insights into the identity of the Cretaceous coccolithophores that possibly synthesized alkenones are also offered.more » « less
An official website of the United States government
