skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modular droplet injector for sample conservation providing new structural insight for the conformational heterogeneity in the disease-associated NQO1 enzyme
A 3D-printed modular droplet injector successfully delivered microcrystals of human NAD(P)H:quinone oxidoreductase 1 (NQO1) and phycocyanin with electrical stimulation in a serial crystallography experiment at 120 Hz repetition rate.  more » « less
Award ID(s):
1943448
PAR ID:
10492861
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Lab on a Chip
Volume:
23
Issue:
13
ISSN:
1473-0197
Page Range / eLocation ID:
3016 to 3033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This article considers a long-outstanding open question regarding the Jacobian determinant for the relativistic Boltzmann equation in the center-of-momentum coordinates. For the Newtonian Boltzmann equation, the center-of-momentum coordinates have played a large role in the study of the Newtonian non-cutoff Boltzmann equation, in particular we mention the widely used cancellation lemma [1]. In this article we calculate specifically the very complicated Jacobian determinant, in ten variables, for the relativistic collision map from the momentum p to the post collisional momentum $$p'$$ p ′ ; specifically we calculate the determinant for $$p\mapsto u = \theta p'+\left( 1-\theta \right) p$$ p ↦ u = θ p ′ + 1 - θ p for $$\theta \in [0,1]$$ θ ∈ [ 0 , 1 ] . Afterwards we give an upper-bound for this determinant that has no singularity in both p and q variables. Next we give an example where we prove that the Jacobian goes to zero in a specific pointwise limit. We further explain the results of our numerical study which shows that the Jacobian determinant has a very large number of distinct points at which it is machine zero. This generalizes the work of Glassey-Strauss (1991) [8] and Guo-Strain (2012) [12]. These conclusions make it difficult to envision a direct relativistic analog of the Newtonian cancellation lemma in the center-of-momentum coordinates. 
    more » « less
  2. Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} . 
    more » « less
  3. This article is a Commentary onYuet al. (2022),236: 1140–1153. 
    more » « less
  4. null (Ed.)
    Abstract We show how to construct a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner over a set $${P}$$ P of n points in $${\mathbb {R}}^d$$ R d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $${\vartheta },\varepsilon \in (0,1)$$ ϑ , ε ∈ ( 0 , 1 ) , the computed spanner $${G}$$ G has $$\begin{aligned} {{\mathcal {O}}}\bigl (\varepsilon ^{-O(d)} {\vartheta }^{-6} n(\log \log n)^6 \log n \bigr ) \end{aligned}$$ O ( ε - O ( d ) ϑ - 6 n ( log log n ) 6 log n ) edges. Furthermore, for any k , and any deleted set $${{B}}\subseteq {P}$$ B ⊆ P of k points, the residual graph $${G}\setminus {{B}}$$ G \ B is a $$(1+\varepsilon )$$ ( 1 + ε ) -spanner for all the points of $${P}$$ P except for $$(1+{\vartheta })k$$ ( 1 + ϑ ) k of them. No previous constructions, beyond the trivial clique with $${{\mathcal {O}}}(n^2)$$ O ( n 2 ) edges, were known with this resilience property (i.e., only a tiny additional fraction of vertices, $$\vartheta |B|$$ ϑ | B | , lose their distance preserving connectivity). Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black-box fashion. 
    more » « less
  5. For domains in R d \mathbb {R}^d , d ≥ 2 d\geq 2 , we prove universal upper and lower bounds on the product of the bottom of the spectrum for the Laplacian to the power p > 0 p>0 and the supremum over all starting points of the p p -moments of the exit time of Brownian motion. It is shown that the lower bound is sharp for integer values of p p and that for p ≥ 1 p \geq 1 , the upper bound is asymptotically sharp as d → ∞ d\to \infty . For all p > 0 p>0 , we prove the existence of an extremal domain among the class of domains that are convex and symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube is extremal. 
    more » « less