skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The eigensplitting of the fiber of the cyclotomic trace for the sphere spectrum
Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} .  more » « less
Award ID(s):
1812064 2104348
PAR ID:
10390343
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let p∈Z be an odd prime. We prove a spectral version of Tate–Poitou duality for the algebraic K-theory spectra of number rings with p inverted. This identifies the homotopy type of the fiber of the cyclotomic trace K(OF)∧p→TC(OF)∧p after taking a suitably connective cover. As an application, we identify the homotopy type at odd primes of the homotopy fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic K-theory of Z. 
    more » « less
  2. This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ⁡ ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ⁡ ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ⁡ ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ⁡ ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
    more » « less
  3. null (Ed.)
    Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d . 
    more » « less
  4. Let $$\R$$ be a real closed field and $$\C$$ the algebraic closure of $$\R$$. We give an algorithm for computing a semi-algebraic basis for the first homology group, $$\HH_1(S,\mathbb{F})$$, with coefficients in a field $$\FF$$, of any given semi-algebraic set $$S \subset \R^k$$ defined by a closed formula. The complexity of the algorithm is bounded singly exponentially. More precisely, if the given quantifier-free formula involves $$s$$ polynomials whose degrees are bounded by $$d$$, the complexity of the algorithm is bounded by $$(s d)^{k^{O(1)}}$$. This algorithm generalizes well known algorithms having singly exponential complexity for computing a semi-algebraic basis of the zero-th homology group of semi-algebraic sets, which is equivalent to the problem of computing a set of points meeting every semi-algebraically connected component of the given semi-algebraic set at a unique point. It is not known how to compute such a basis for the higher homology groups with singly exponential complexity. As an intermediate step in our algorithm we construct a semi-algebraic subset $$\Gamma$$ of the given semi-algebraic set $$S$$, such that $$\HH_q(S,\Gamma) = 0$$ for $q=0,1$. We relate this construction to a basic theorem in complex algebraic geometry stating that for any affine variety $$X$$ of dimension $$n$$, there exists Zariski closed subsets \[ Z^{(n-1)} \supset \cdots \supset Z^{(1)} \supset Z^{(0)} \] with $$\dim_\C Z^{(i)} \leq i$, and $$\HH_q(X,Z^{(i)}) = 0$$ for $$0 \leq q \leq i$$. We conjecture a quantitative version of this result in the semi-algebraic category, with $$X$$ and $$Z^{(i)}$$ replaced by closed semi-algebraic sets. We make initial progress on this conjecture by proving the existence of $$Z^{(0)}$$ and $$Z^{(1)}$$ with complexity bounded singly exponentially (previously, such an algorithm was known only for constructing $$Z^{(0)}$$). 
    more » « less
  5. null (Ed.)
    Abstract We prove duality results for residual intersections that unify and complete results of van Straten,Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt. Suppose that I is an ideal of codimension g in a Gorenstein ring,and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s . Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K} . In the first part of the paper we prove, among other things, that under suitable hypotheses on I , the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dualto one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}} . In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant. 
    more » « less