Coagulation/flocculation is a widely used water and wastewater treatment process due to its low cost, simplicity, and effectiveness. However, the process is not effective in the treatment of per- and polyfluoroalkyl substances (PFAS), the presence and treatment of which is an ongoing challenge for water providers. Here, we explore cationic surfactant-enhanced coagulation as a process modification to target the removal of PFAS in existing coagulation/flocculation systems. Batch experiments, in jar testing apparatus, were performed to assess the removal of two short-chain and two long-chain PFAS at an initial concentration of 10 µg/L with the addition of cetyltrimethylammoniumg chloride (CTAC) as the coagulant-aid. Our findings suggest that elevated coagulant dose (60 mg/L of alum or 100 mg/L of FeCl3) coupled with the addition of a cationic surfactant (1 mg/L of CTAC) significantly enhanced the removal of both short-chain (perfluorobutane sulfonate: PFBS removal to >40%) and long-chain PFAS (perfluorooctanoic acid: PFOA and perfluorooctane sulfonate: PFOS removal to >80%), with FeCl3 showing better performance than alum. Sulfonates (PFBS, PFOS) were shown to be removed more efficiently compared to carboxylates (PFBA, PFOA), presumably due to their higher hydrophobicity leading to better interactions with the flocs. Furthermore, CTAC in combination with traditionally used additives such as Powdered Activated Carbon (PAC), served as a better aid for PFAS treatment and improved the removal of PFBS, PFOA, and PFOS to >98%. This study highlights that introducing a cost-effective pre-treatment with a cationic surfactant to existing conventional treatment systems can improve the performance efficiency in treating PFAS-contaminated waters.
more »
« less
Plasma-Assisted Abatement of Per- and Polyfluoroalkyl Substances (PFAS): Thermodynamic Analysis and Validation in Gliding Arc Discharge
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (⋅OH) and/or hydrated electrons (e−(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons.
more »
« less
- Award ID(s):
- 1747671
- PAR ID:
- 10492865
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Plasma
- Volume:
- 6
- Issue:
- 3
- ISSN:
- 2571-6182
- Page Range / eLocation ID:
- 419 to 434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The determination of gas phase thermochemical properties of per‐ and polyfluoroalkyl substances (PFAS) is central to understanding the long‐range transport behavior of PFAS in the atmosphere. Prior gas‐phase studies have reported the properties of perfluorinated sulfonic acid (PFOS) and perfluorinated octanoic acid (PFOA). Here, this study reports the gas phase enthalpies of formation of short‐ and long‐chain PFAS and their precursor molecules determined using density functional theory (DFT) andab initioapproaches. Two density functionals, twoab initiomethods and an empirical method were used to compute enthalpies of formation with the total atomization approach and an isogyric reaction. The performance of the computational methods employed in this work were validated against the experimental enthalpies of linear alkanoic acids and perfluoroalkanes. The gas‐phase determinations will be useful for future studies of PFAS in the atmosphere, and the methodological choices will be helpful in the study of other PFAS.more » « less
-
Although most manufacturers stopped using long-chain per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), short-chain PFASs are still widely employed. Short-chain PFASs are less known in terms of toxicity and have different adsorption behavior from long-chain PFASs. Previous studies have shown electrostatic interaction with the adsorbent to be the dominant mechanism for the removal of short-chain PFASs. In this study, we designed a high charge density cationic quaternized nanocellulose (QNC) to enhance the removal of both short- and long-chain PFASs from contaminated water. Systematic batch adsorption tests were conducted using the QNC adsorbent to compare its efficiency against PFASs with varying chain lengths and functional groups. From the kinetic study, PFBA (perfluorobutanoic acid), PFBS (perfluorobutanesulfonic acid) and PFOS showed rapid adsorption rates, which reached near equilibrium values (>95% of removal) between 1 min to 15 min, while PFOA required a relatively longer equilibration time of 2 h (it obtained 90% of removal within 15 min). According to the isotherm results, the maximum adsorption capacity ( Q m ) of the QNC adsorbent exhibited the following trend: PFOS ( Q m = 559 mg g −1 or 1.12 mmol g −1 ) > PFOA ( Q m = 405 mg g −1 or 0.98 mmol g −1 ) > PFBS ( Q m = 319 mg g −1 or 1.06 mmol g −1 ) > PFBA ( Q m = 121 mg g −1 or 0.57 mmol g −1 ). This adsorption order generally matches the hydrophobicity trend among four PFASs associated with both PFAS chain length and functional group. In competitive studies, pre-adsorbed short-chain PFASs were quickly desorbed by long-chain PFASs, suggesting that the hydrophobicity of the molecule played an important role in the adsorption process on to QNC. Finally, the developed QNC adsorbent was tested to treat PFAS-contaminated groundwater, which showed excellent removal efficiency (>95%) for long-chain PFASs (C7–C9) even at a low adsorbent dose of 32 mg L −1 . However, short-chain PFASs ( i.e. , PFBA and perfluoropentanoic acid (PFPeA)) were poorly removed by the QNC adsorbent (0% and 10% removal, respectively) due to competing constituents in the groundwater matrix. This was further confirmed by controlled experiments that revealed a drop in the performance of QNC to remove short-chain PFASs at elevated ionic strength (NaCl), but not for long-chain PFASs, likely due to charge neutralization of the anionic functional group of PFASs by inorganic cations. Overall, the QNC adsorbent featured improved PFAS adsorption capacity at almost two-fold of PFAS removal by granular activated carbons, especially for short-chain PFASs. We believe, QNC can complement the use of common treatment methods such as activated carbon or ionic exchange resin to remove a wide range of PFAS pollutants, heading towards the complete remediation of PFAS contamination.more » « less
-
Understanding the fate and transport of per- and polyfluoroalkyl substances (PFAS) at contaminated sites is crucial for effective remedial and regulatory decision-making. This interdisciplinary study offers a novel approach for estimating and mapping PFAS sorption properties and their impact on PFAS fate and transport. By integrating electromagnetic induction (EMI) surveys, physical and chemical sediment characterization, mineralogical characterization, and batch sorption experiments of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), we develop a comprehensive mapping of sorption dynamics. Sediments collected from a compound bar deposit were analyzed to establish correlations between EMI signal, sediment characteristics, and PFOA and PFOS sorption distribution coefficients (Kd). Sorption behavior and EMI response of these compounds were consistent with the sediments’ physical and chemical properties where Kd and electrical conductivity was higher with finer grain size, higher organic matter content, and higher aluminum and iron contents. The study demonstrates that EMI effectively maps PFAS sorption properties spatially, providing crucial insights into the sedimentological controls that govern both EMI responses and PFAS sorption. Correlation analysis yielded Pearson correlation values of 0.71 for EMI-PFOA Kd and 0.56 for EMI-PFOS Kd, underscoring the potential of EMI in predicting the spatial distribution of PFAS sorption in complex sedimentary environments. While these Pearson correlation values indicate moderate to strong correlations, their significance is amplified by the cost-effectiveness and extensive aerial coverage of EMI, the sparsity of sediment samples typically collected for batch sorption, and their spatial distribution. These results highlight the potential of EMI to identify sorption hotspots, thereby guiding targeted remediation efforts and enhancing site management strategies, ultimately reducing both costs and environmental impacts.more » « less
-
Per- and polyfluorinated alkyl substances (PFAS) are persistent contaminants that have been continuously detected in groundwater and drinking water around the globe. Hexafluoropropylene oxide dimer acid (tradename GenX) has been used to substitute traditional PFAS, such as PFOA, but its intense use has caused widespread occurrence in water streams and often in high levels. Here, we evaluate a redox-copolymer, poly(4-methacryloyloxy-2,2,6,6-tetramethylpiperidin-1-oxyl- co -4-methacryloyloxy-2,2,6,6-tetramethylpiperidine) (PTMA- co -PTMPMA), for the selective electrochemical removal of GenX. The amine functional groups promote affinity towards the anionic PFAS, and the redox-active nitroxide radicals provide electrochemical control for adsorption and desorption. Faster kinetics and higher uptake (>475 mg g −1 adsorbent) were obtained with the redox-copolymer when applying 0.8 V vs. Ag/AgCl potential compared to open circuit. The copolymer electrosorbents were evaluated over a wide pH range and diverse water matrices, with electrostatic-based mechanisms dependent on the state of protonation of the PFAS. Moreover, we translated the redox-electrodes from a batch to flow-by cell configuration, showing successful adsorption and release of GenX under flow and electrochemical control. Finally, prolonged exposure of GenX at reduction potentials generated smaller PFAS fragments at the redox-electrodes. To fully defluorinate GenX, the copolymer-functionalized electrodes were coupled with a boron-doped diamond (BDD) counter electrode for integrating separation and defluorination within the same device. The combined system demonstrated close to 100% defluorination efficiency. Thus, we highlight the potential of electroactive redox platforms for the reactive separation of fluorotelomers, and point to future directions for their practical implementation for water treatment.more » « less
An official website of the United States government

