Although most manufacturers stopped using long-chain per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), short-chain PFASs are still widely employed. Short-chain PFASs are less known in terms of toxicity and have different adsorption behavior from long-chain PFASs. Previous studies have shown electrostatic interaction with the adsorbent to be the dominant mechanism for the removal of short-chain PFASs. In this study, we designed a high charge density cationic quaternized nanocellulose (QNC) to enhance the removal of both short- and long-chain PFASs from contaminated water. Systematic batch adsorption tests were conducted using the QNC adsorbent to compare its efficiency against PFASs with varying chain lengths and functional groups. From the kinetic study, PFBA (perfluorobutanoic acid), PFBS (perfluorobutanesulfonic acid) and PFOS showed rapid adsorption rates, which reached near equilibrium values (>95% of removal) between 1 min to 15 min, while PFOA required a relatively longer equilibration time of 2 h (it obtained 90% of removal within 15 min). According to the isotherm results, the maximum adsorption capacity ( Q m ) of the QNC adsorbent exhibited the following trend: PFOS ( Q m = 559 mg g −1 or 1.12 mmol g −1 ) > PFOA ( Q m = 405 mg g −1 or 0.98 mmol g −1 ) > PFBS ( Q m = 319 mg g −1 or 1.06 mmol g −1 ) > PFBA ( Q m = 121 mg g −1 or 0.57 mmol g −1 ). This adsorption order generally matches the hydrophobicity trend among four PFASs associated with both PFAS chain length and functional group. In competitive studies, pre-adsorbed short-chain PFASs were quickly desorbed by long-chain PFASs, suggesting that the hydrophobicity of the molecule played an important role in the adsorption process on to QNC. Finally, the developed QNC adsorbent was tested to treat PFAS-contaminated groundwater, which showed excellent removal efficiency (>95%) for long-chain PFASs (C7–C9) even at a low adsorbent dose of 32 mg L −1 . However, short-chain PFASs ( i.e. , PFBA and perfluoropentanoic acid (PFPeA)) were poorly removed by the QNC adsorbent (0% and 10% removal, respectively) due to competing constituents in the groundwater matrix. This was further confirmed by controlled experiments that revealed a drop in the performance of QNC to remove short-chain PFASs at elevated ionic strength (NaCl), but not for long-chain PFASs, likely due to charge neutralization of the anionic functional group of PFASs by inorganic cations. Overall, the QNC adsorbent featured improved PFAS adsorption capacity at almost two-fold of PFAS removal by granular activated carbons, especially for short-chain PFASs. We believe, QNC can complement the use of common treatment methods such as activated carbon or ionic exchange resin to remove a wide range of PFAS pollutants, heading towards the complete remediation of PFAS contamination.
more »
« less
This content will become publicly available on November 25, 2025
Surfactant-enhanced coagulation and flocculation improves the removal of perfluoroalkyl substances from surface water
Coagulation/flocculation is a widely used water and wastewater treatment process due to its low cost, simplicity, and effectiveness. However, the process is not effective in the treatment of per- and polyfluoroalkyl substances (PFAS), the presence and treatment of which is an ongoing challenge for water providers. Here, we explore cationic surfactant-enhanced coagulation as a process modification to target the removal of PFAS in existing coagulation/flocculation systems. Batch experiments, in jar testing apparatus, were performed to assess the removal of two short-chain and two long-chain PFAS at an initial concentration of 10 µg/L with the addition of cetyltrimethylammoniumg chloride (CTAC) as the coagulant-aid. Our findings suggest that elevated coagulant dose (60 mg/L of alum or 100 mg/L of FeCl3) coupled with the addition of a cationic surfactant (1 mg/L of CTAC) significantly enhanced the removal of both short-chain (perfluorobutane sulfonate: PFBS removal to >40%) and long-chain PFAS (perfluorooctanoic acid: PFOA and perfluorooctane sulfonate: PFOS removal to >80%), with FeCl3 showing better performance than alum. Sulfonates (PFBS, PFOS) were shown to be removed more efficiently compared to carboxylates (PFBA, PFOA), presumably due to their higher hydrophobicity leading to better interactions with the flocs. Furthermore, CTAC in combination with traditionally used additives such as Powdered Activated Carbon (PAC), served as a better aid for PFAS treatment and improved the removal of PFBS, PFOA, and PFOS to >98%. This study highlights that introducing a cost-effective pre-treatment with a cationic surfactant to existing conventional treatment systems can improve the performance efficiency in treating PFAS-contaminated waters.
more »
« less
- Award ID(s):
- 2401203
- PAR ID:
- 10618795
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Environmental Science: Advances
- Volume:
- 3
- Issue:
- 12
- ISSN:
- 2754-7000
- Page Range / eLocation ID:
- 1714 to 1721
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic organofluorine surfactants that are resistant to typical methods of degradation. Thermal techniques along with other novel, less energy-intensive techniques are currently being investigated for the treatment of PFAS-contaminated matrices. Non-equilibrium plasma is one technique that has shown promise for the treatment of PFAS-contaminated water. To better tailor non-equilibrium plasma systems for this application, knowledge of the energy required for mineralization, and in turn the roles that plasma reactive species and heat can play in this process, would be useful. In this study, fundamental thermodynamic equations were used to estimate the enthalpies of reaction (480 kJ/mol) and formation (−4640 kJ/mol) of perfluorooctanoic acid (PFOA, a long-chain legacy PFAS) in water. This enthalpy of reaction estimate indicates that plasma reactive species alone cannot catalyze the reaction; because the reaction is endothermic, energy input (e.g., heat) is required. The estimated enthalpies were used with HSC Chemistry software to produce a model of PFOA defluorination in a 100 mg/L aqueous solution as a function of enthalpy. The model indicated that as enthalpy of the reaction system increased, higher PFOA defluorination, and thus a higher extent of mineralization, was achieved. The model results were validated using experimental results from the gliding arc plasmatron (GAP) treatment of PFOA or PFOS-contaminated water using argon and air, separately, as the plasma gas. It was demonstrated that PFOA and PFOS mineralization in both types of plasma required more energy than predicted by thermodynamics, which was anticipated as the model did not take kinetics into account. However, the observed trends were similar to that of the model, especially when argon was used as the plasma gas. Overall, it was demonstrated that while energy input (e.g., heat) was required for the non-equilibrium plasma degradation of PFOA in water, a lower energy barrier was present with plasma treatment compared to conventional thermal treatments, and therefore mineralization was improved. Plasma reactive species, such as hydroxyl radicals (⋅OH) and/or hydrated electrons (e−(aq)), though unable to accelerate an endothermic reaction alone, likely served as catalysts for PFOA mineralization, helping to lower the energy barrier. In this study, the activation energies (Ea) for these species to react with the alpha C–F bond in PFOA were estimated to be roughly 1 eV for hydroxyl radicals and 2 eV for hydrated electrons.more » « less
-
Jay Gan (Ed.)Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes). 6:2 FTS did not alter the growth or health of phytoplankton communities, as there were no changes relative to the controls (no PFOS added). On the other hand, PFOS elicited significant phototoxicity (p < 0.05), altering PSII antennae size, lowering PSII connectivity, and decreasing photosynthetic efficiency over the incubation (four days). PFOS induced a cellular protective response, indicated by significant increases (p < 0.001) in the release of transparent exopolymer particles (TEP) compared to the control. Eukaryotic communities (18S rRNA gene) changed substantially (p < 0.05) and to a greater extent than prokaryotic communities (16S rRNA gene) in PFOS treatments. Community shifts were concentration-dependent for eukaryotes, with the low treatment (5 mg/L PFOS) dominated by Coscinodiscophyceae (40 %), and the high treatment (30 mg/L PFOS) marked by a Trebouxiophyceae (50 %) dominance. Prokaryotic community shifts were not concentration dependent, as both treatment levels became depleted in Cyanobacteriia and were dominated by members of the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. Further, PFOS significantly decreased (p < 0.05) the Shannon diversity and Pielou’s evenness across treatments for eukaryotes, and in the low treatment (5 mg/L PFOS) for prokaryotes. These findings show that photophysiology was not impacted by 6:2 FTS but PFOS elicited toxicity that impacted photosynthesis, exudate release, and community composition. This research is crucial in understanding how PFOS impacts microbial communities.more » « less
-
Abstract Water treatment technologies are needed that can convert per‐ and polyfluoroalkyl substances (PFAS) into inorganic products (e.g., CO2, F−) that are less toxic than parent PFAS compounds. Research on electrochemical treatment processes such as electrocoagulation and electrooxidation has demonstrated proof‐of‐concept PFAS removal and destruction. However, research has primarily been conducted in laboratory matrices that are electrochemically favorable (e.g., high initial PFAS concentration [μg/L–mg/L], high conductivity, and absence of oxidant scavengers). Electrochemical treatment is also a promising technology for treating PFAS in water treatment residuals from nondestructive technologies (e.g., ion exchange, nanofiltration, and reverse osmosis). Future electrochemical PFAS treatment research should focus on environmentally relevant PFAS concentrations (i.e., ng/L), matrix conductivity, natural organic matter impacts, short‐chain PFAS removal, transformation products analysis, and systems‐level analysis for cost evaluation. Article Impact StatementElectrochemical treatment is capable of destroying per‐ and polyfluoroalkyl substances, but future research should reflect more realistic drinking water sources.more » « less
-
Abstract Land application of treated sewage sludge (also known as biosolids) is considered a sustainable route of disposal because it reduces waste loading into landfills while improving soil health. However, this waste management practice can introduce contaminants from biosolids, such as per- and polyfluoroalkyl substances (PFAS), into the environment. PFAS have been observed to be taken up by plants, accumulate in humans and animals, and have been linked to various negative health effects. There is limited information on the nature and amounts of PFAS introduced from biosolids that have undergone different treatment processes. Therefore, this study developed analytical techniques to improve the characterization of PFAS in complex biosolid samples. Different clean-up techniques were evaluated and applied to waste-activated sludge (WAS) and lime-stabilized primary solids (PS) prior to targeted analysis and suspect screening of biosolid samples. Using liquid chromatography with high-resolution mass spectrometry, a workflow was developed to achieve parallel quantitative targeted analysis and qualitative suspect screening. This study found that concentrations of individual PFAS (27 targeted analytes) can range from 0.6 to 84.6 ng/g in WAS (average total PFAS = 241.4 ng/g) and from 1.6 to 33.8 ng/g in PS (average total PFAS = 72.1 ng/g). The suspect screening workflow identified seven additional PFAS in the biosolid samples, five of which have not been previously reported in environmental samples. Some of the newly identified compounds are a short-chain polyfluorinated carboxylate (a PFOS replacement), a diphosphate ester (a PFOA precursor), a possible transformation product of carboxylate PFAS, and an imidohydrazide which contains a sulfonate and benzene ring.more » « less
An official website of the United States government
