skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation
We consider the codimension one asymptotic stability problem for the soliton of the focusing cubic Klein-Gordon equation on the line under even perturbations. The main obstruction to full asymptotic stability on the center-stable manifold is a small divisor in a quadratic source term of the perturbation equation. This singularity is due to the threshold resonance of the linearized operator and the absence of null structure in the nonlinearity. The threshold resonance of the linearized operator produces a one-dimensional space of slowly decaying Klein-Gordon waves, relative to local norms. In contrast, the closely related perturbation equation for the sine-Gordon kink does exhibit null structure, which makes the corresponding quadratic source term amenable to normal forms (see Lührmann and Schlag [Duke Math. J. 172 (2023), pp. 2715–2820]). The main result of this work establishes decay estimates up to exponential time scales for small “codimension one type” perturbations of the soliton of the focusing cubic Klein-Gordon equation. The proof is based upon a super-symmetric approach to the study of modified scattering for 1D nonlinear Klein-Gordon equations with Pöschl-Teller potentials from Lührmann and Schlag [Duke Math. J. 172 (2023), pp. 2715–2820], and an implementation of a version of an adapted functional framework introduced by Germain and Pusateri [Forum Math. Pi 10 (2022), p. 172].  more » « less
Award ID(s):
2054841 1954707
PAR ID:
10492934
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society (AMS)
Date Published:
Journal Name:
Communications of the American Mathematical Society
Volume:
4
Issue:
7
ISSN:
2692-3688
Format(s):
Medium: X Size: p. 230-356
Size(s):
p. 230-356
Sponsoring Org:
National Science Foundation
More Like this
  1. We establish dispersive estimates and local decay estimates for the time evolution of non-self-adjoint matrix Schrödinger operators with threshold resonances in one space dimension. In particular, we show that the decay rates in the weighted setting are the same as in the regular case after subtracting a finite rank operator corresponding to the threshold resonances. Such matrix Schrödinger operators naturally arise from linearizing a focusing nonlinear Schrödinger equation around a solitary wave. It is known that the linearized operator for the 1D focusing cubic NLS equation exhibits a threshold resonance. We also include an observation of a favorable structure in the quadratic nonlinearity of the evolution equation for perturbations of solitary waves of the 1D focusing cubic NLS equation. 
    more » « less
  2. Abstract We consider the asymptotic behavior of small global-in-time solutions to a 1D Klein–Gordon equation with a spatially localized, variable coefficient quadratic nonlinearity and a non-generic linear potential. The purpose of this work is to continue the investigation of the occurrence of a novel modified scattering behavior of the solutions that involves a logarithmic slow-down of the decay rate along certain rays. This phenomenon is ultimately caused by the threshold resonance of the linear Klein–Gordon operator. It was previously uncovered for the special case of the zero potential in [51]. The Klein–Gordon model considered in this paper is motivated by the asymptotic stability problem for kink solutions arising in classical scalar field theories on the real line. 
    more » « less
  3. Abstract We study the problem of stability of the catenoid, which is an asymptotically flat rotationally symmetric minimal surface in Euclidean space, viewed as a stationary solution to the hyperbolic vanishing mean curvature equation in Minkowski space. The latter is a quasilinear wave equation that constitutes the hyperbolic counterpart of the minimal surface equation in Euclidean space. Our main result is the nonlinear asymptotic stability, modulo suitable translation and boost (i.e., modulation), of the$$n$$ n -dimensional catenoid with respect to a codimension one set of initial data perturbations without any symmetry assumptions, for$$n \geq 5$$ n 5 . The modulation and the codimension one restriction on the data are necessary and optimal in view of the kernel and the unique simple eigenvalue, respectively, of the stability operator of the catenoid. In a broader context, this paper fits in the long tradition of studies of soliton stability problems. From this viewpoint, our aim here is to tackle some new issues that arise due to the quasilinear nature of the underlying hyperbolic equation. Ideas introduced in this paper include a new profile construction and modulation analysis to track the evolution of the translation and boost parameters of the stationary solution, a new scheme for proving integrated local energy decay for the perturbation in the quasilinear and modulation-theoretic context, and an adaptation of the vectorfield method in the presence of dynamic translations and boosts of the stationary solution. 
    more » « less
  4. Abstract Integrable standard and nonlocal derivative nonlinear Schrödinger equations are investigated. The direct and inverse scattering are constructed for these equations; included are both the Riemann–Hilbert and Gel’fand–Levitan–Marchenko approaches and soliton solutions. As a typical application, it is shown how these derivative NLS equations can be obtained as asymptotic limits from a nonlinear Klein–Gordon equation. 
    more » « less
  5. We study the focusing NLS equation in $$R\mathbb{R}^N$$ in the mass-supercritical and energy-subcritical (or intercritical ) regime, with $H^1$ data at the mass-energy threshold $$\mathcal{ME}(u_0)=\mathcal{ME}(Q)$$, where Q is the ground state. Previously, Duyckaerts–Merle studied the behavior of threshold solutions in the $H^1$-critical case, in dimensions $N = 3, 4, 5$, later generalized by Li–Zhang for higher dimensions. In the intercritical case, Duyckaerts–Roudenko studied the threshold problem for the 3d cubic NLS equation. In this paper, we generalize the results of Duyckaerts–Roudenko for any dimension and any power of the nonlinearity for the entire intercritical range. We show the existence of special solutions, $$Q^\pm$$, besides the standing wave $$e^{it}Q$$, which exponentially approach the standing wave in the positive time direction, but differ in its behavior for negative time. We classify solutions at the threshold level, showing either blow-up occurs in finite (positive and negative) time, or scattering in both time directions, or the solution is equal to one of the three special solutions above, up to symmetries. Our proof extends to the $H^1$-critical case, thus, giving an alternative proof of the Li–Zhang result and unifying the critical and intercritical cases. These results are obtained by studying the linearized equation around the standing wave and some tailored approximate solutions to the NLS equation. We establish important decay properties of functions associated to the spectrum of the linearized Schrödinger operator, which, in combination with modulational stability and coercivity for the linearized operator on special subspaces, allows us to use a fixed-point argument to show the existence of special solutions. Finally, we prove the uniqueness by studying exponentially decaying solutions to a sequence of linearized equations. 
    more » « less