skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eddy‐Mediated Turbulent Mixing of Oxygen in the Equatorial Pacific
Abstract In the tropical Pacific, weak ventilation and intense microbial respiration at depth give rise to a low dissolved oxygen (O2) environment that is thought to be ventilated primarily by the equatorial current system (ECS). The role of mesoscale eddies and vertical mixing as potential pathways of O2supply in this region, however, remains poorly known due to sparse observations and coarse model resolution. Using an eddy resolving simulation of ocean circulation and biogeochemistry, we assess the contribution of these processes to the O2budget balance and find that vertical mixing of O2, which is modulated by the surface wind speed and the vertical shear of the eddying currents, contributes substantially to the replenishment of O2in the upper equatorial Pacific thermocline, complementing the advective supply of O2by the ECS and meridional circulation at depth. These transport processes vary seasonally in conjunction with the wind: mixing of O2into the upper thermocline is strongest during boreal summer and fall when the vertical shear and eddy kinetic energy are intensified. The relationship between eddy activity and the downward mixing of O2arises from the modulation of equatorial turbulence by Tropical Instability Waves via their impacts on the vertical shear. This interaction of processes across scales sustains a local pathway of O2delivery into the equatorial Pacific interior and highlights the need for adequate observations and models of turbulent mixing and mesoscale processes for understanding and predicting the fate of the tropical Pacific O2content in a warmer and more stratified ocean.  more » « less
Award ID(s):
1948599 1948281
PAR ID:
10492957
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
129
Issue:
3
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding how the tropical Pacific responds to rising greenhouse gases in recent decades is of paramount importance given its central role in global climate systems. Extensive research has explored the long-term trends of tropical Pacific sea surface temperatures (SSTs) and the overlying atmosphere, yet the historical change in the upper ocean has received far less attention. Here, we present compelling evidence of a prominent subsurface cooling pattern along the thermocline in the central-to-eastern tropical Pacific since 1958. This subsurface cooling has been argued to be contributing to the observed cooling or lack of warming of the equatorial cold tongue SST. We further demonstrate that different mechanisms are responsible for different parts of the subsurface cooling. In the central-to-eastern equatorial Pacific and the southeastern off-equatorial Pacific, where zonal wind stress strengthens, a pronounced subsurface cooling trend emerges just above the thermocline that is closely tied to increased Ekman pumping. In the eastern equatorial Pacific where zonal wind stress weakens, the westward surface current and eastward Equatorial Undercurrent weaken as well, resulting in reduced vertical current shear and increased ocean stability, which suppresses vertical mixing and leads to local cooling. We conclude that the historical subsurface cooling is primarily linked to dynamical adjustments of ocean currents to tropical surface wind stress changes. 
    more » « less
  2. Abstract The tropical Pacific warming pattern since the 1950s exhibits two warming centers in the western Pacific (WP) and eastern Pacific (EP), encompassing an equatorial central Pacific (CP) cooling and a hemispheric asymmetry in the subtropical EP. The underlying mechanisms of this warming pattern remain debated. Here, we conduct ocean heat decompositions of two coupled model large ensembles to unfold the role of wind-driven ocean circulation. When wind changes are suppressed, historical radiative forcing induces a subtropical northeastern Pacific warming, thus causing a hemispheric asymmetry that extends toward the tropical WP. The tropical EP warming is instead induced by the cross-equatorial winds associated with the hemispheric asymmetry, and its driving mechanism is southward warm Ekman advection due to the off-equatorial westerly wind anomalies around 5°N, not vertical thermocline adjustment. Climate models fail to capture the observed CP cooling, suggesting an urgent need to better simulate equatorial oceanic processes and thermal structures. 
    more » « less
  3. null (Ed.)
    Abstract The origins of an observed weakly sheared nonturbulent (laminar) layer (WSL), and a strongly sheared turbulent layer above the Equatorial Undercurrent core (UCL) in the eastern equatorial Pacific are studied, based mainly on the data from the Tropical Atmosphere and Ocean mooring array. Multiple-time-scale (from 3 to 25 days) equatorial waves were manifested primarily as zonal velocity oscillations with the maximum amplitudes (from 10 to 30 cm s −1 ) occurring at different depths (from the surface to 85-m depths) above the seasonal thermocline. The subsurface-intensified waves led to vertically out-of-phase shear variations in the upper thermocline via destructive interference with the seasonal zonal flow, opposing the tendency for shear instability. These waves were also associated with depth-dependent, multiple-vertical-scale stratification variations, with phase lags of π /2 or π , further altering stability of the zonal current system to vertical shear. The WSL and UCL were consequently formed by coupling of multiple equatorial waves with differing phases, particularly of the previously identified equatorial mode and subsurface mode tropical instability waves (with central period of 17 and 20 days, respectively, in this study), and subsurface-intensified waves with central periods of 6, 5, and 12 days and velocity maxima at 45-, 87-, and 40-m depths, respectively. In addition, a wave-like feature with periods of 50–90 days enhanced the shear throughout the entire UCL. WSLs and UCLs seem to emerge without a preference for particular tropical instability wave phases. The generation mechanisms of the equatorial waves and their joint impacts on thermocline mixing remain to be elucidated. 
    more » « less
  4. null (Ed.)
    Abstract Persistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere-ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics. 
    more » « less
  5. Turbulence-enhanced mixing of upper ocean heat allows interaction between the tropical atmosphere and cold water masses that impact climate at higher latitudes thereby regulating air–sea coupling and poleward heat transport. Tropical cyclones (TCs) can drastically enhance upper ocean mixing and generate powerful near-inertial internal waves (NIWs) that propagate down into the deep ocean. Globally, downward mixing of heat during TC passage causes warming in the seasonal thermocline and pumps 0.15 to 0.6 PW of heat into the unventilated ocean. The final distribution of excess heat contributed by TCs is needed to understand subsequent consequences for climate; however, it is not well constrained by current observations. Notably, whether or not excess heat supplied by TCs penetrates deep enough to be kept in the ocean beyond the winter season is a matter of debate. Here, we show that NIWs generated by TCs drive thermocline mixing weeks after TC passage and thus greatly deepen the extent of downward heat transfer induced by TCs. Microstructure measurements of the turbulent diffusivity ( κ ) and turbulent heat flux ( J q ) in the Western Pacific before and after the passage of three TCs indicate that mean thermocline values of κ and J q increased by factors of 2 to 7 and 2 to 4 (95% confidence level), respectively, after TC passage. Excess mixing is shown to be associated with the vertical shear of NIWs, demonstrating that studies of TC–climate interactions ought to represent NIWs and their mixing to accurately capture TC effects on background ocean stratification and climate. 
    more » « less