skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detrital isotopic record of a retreating accretionary orogen: An example from the Patagonian Andes
U-Pb zircon geochronology and isotopic records have played an influential role in our understanding of convergent margin dynamics. Orogenic cyclicity models link tectonic regimes with magmatic isotopic signatures in advancing orogens, relating compressional regimes with evolved signatures and extension with juvenile signatures; however, such frameworks may not apply for retreating orogens, which commonly produce substantial crustal heterogeneities during backarc rifting and ocean spreading. We explore the Mesozoic to Cenozoic Patagonian Andes tectonic evolution, combining U-Pb zircon ages, bulk rock εNd, and new detrital zircon εHf from the retroarc basin to understand the associated magmatic arc evolution during retreat and advance of the margin. Our results reveal a protracted phase of isotopically juvenile magmatism between 150 and 80 Ma, which began during backarc extension and persisted long after the margin switched to a contractional regime. We propose that the prolonged juvenile isotopic trend started mainly due to trenchward migration of the arc during backarc extension (150−120 Ma) and persisted due to partial melting of underthrusted juvenile attenuated and oceanic crust during backarc basin closure (120−80 Ma). This interpretation implies that tectonic stress alone does not predict isotopic trends, and factors like assimilation or the composition of underthrusted crust are important controls on magmatic isotopic composition, especially in retreating and transitional orogens.  more » « less
Award ID(s):
2243685
PAR ID:
10493101
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Geology
Date Published:
Journal Name:
Geology
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The spatial and temporal distribution of arc magmatism and associated isotopic variations provide insights into the Phanerozoic history of the western margin of South America during major shifts in Andean and pre-Andean plate interactions. We integrated detrital zircon U-Th-Pb and Hf isotopic results across continental magmatic arc systems of Chile and western Argentina (28°S–33°S) with igneous bedrock geochronologic and zircon Hf isotope results to define isotopic signatures linked to changes in continental margin processes. Key tectonic phases included: Paleozoic terrane accretion and Carboniferous subduction initiation during Gondwanide orogenesis, Permian–Triassic extensional collapse, Jurassic–Paleogene continental arc magmatism, and Neogene flat slab subduction during Andean shortening. The ~550 m.y. record of magmatic activity records spatial trends in magma composition associated with terrane boundaries. East of 69°W, radiogenic isotopic signatures indicate reworked continental lithosphere with enriched (evolved) εHf values and low (<0.65) zircon Th/U ratios during phases of early Paleozoic and Miocene shortening and lithospheric thickening. In contrast, the magmatic record west of 69°W displays depleted (juvenile) εHf values and high (>0.7) zircon Th/U values consistent with increased asthenospheric contributions during lithospheric thinning. Spatial constraints on Mesozoic to Cenozoic arc width provide a rough approximation of relative subduction angle, such that an increase in arc width reflects shallower slab dip. Comparisons among slab dip calculations with time-averaged εHf and Th/U zircon results exhibit a clear trend of decreasing (enriched) magma compositions with increasing arc width and decreasing slab dip. Collectively, these data sets demonstrate the influence of subduction angle on the position of upper-plate magmatism (including inboard arc advance and outboard arc retreat), changes in isotopic signatures, and overall composition of crustal and mantle material along the western edge of South America. 
    more » « less
  2. ABSTRACT The Great Valley forearc (GVf) basin, California, records deposition along the western margin of North America during active oceanic subduction from Jurassic through Paleogene time. Along the western GVf, its underlying basement, the Coast Range Ophiolite (CRO), is exposed as a narrow outcrop belt. CRO segments are overlain by the Great Valley Group (GVG), and locally, an ophiolitic breccia separates the CRO from basal GVG strata. New stratigraphic, petrographic, and geochronologic data (3865 detrital and 68 igneous zircon U-Pb ages) from the upper CRO, ophiolitic breccia, and basal GVG strata clarify temporal relationships among the three units, constrain maximum depositional ages (MDAs), and identify provenance signatures of the ophiolitic breccia and basal GVG strata. Gabbroic rocks from the upper CRO yield zircon U-Pb ages of 168.0 ± 1.3 Ma and 165.1 ± 1.2 Ma. Prominent detrital-zircon age populations of the ophiolitic breccia and GVG strata comprise Jurassic and Jurassic–Early Cretaceous ages, respectively, with pre-Mesozoic ages in both that are consistent with sources of North America affinity. Combined with petrographic modal analyses that show abundant volcanic grains (> 50%), we interpret the breccia to be mainly derived from the underlying CRO, with limited input from the hinterland of North America, and the basal GVG to be derived from Mesozoic igneous and volcanic rocks of the Sierra Nevada–Klamath magmatic arc and hinterland. Analysis of detrital-zircon grains from the lower and upper ophiolitic breccia yields MDAs of ∼ 166 Ma and ∼ 151 Ma, respectively. Along-strike variation in Jurassic and Cretaceous MDAs from basal GVG strata range from ∼ 148 to 141 Ma, which are interpreted to reflect diachronous deposition in segmented depocenters during early development of the forearc. The ophiolitic breccia was deposited in a forearc position proximal to North America < 4 Myr before the onset of GVG deposition. A new tectonic model for early development of the GVf highlights the role of forearc extension coeval with magmatic arc compression during the earliest stages of basin development. 
    more » « less
  3. Kaczmarek, Stephen; Sweet, Dustin (Ed.)
    ABSTRACT The Great Valley forearc (GVf) basin, California, records deposition along the western margin of North America during active oceanic subduction from Jurassic through Paleogene time. Along the western GVf, its underlying basement, the Coast Range Ophiolite (CRO), is exposed as a narrow outcrop belt. CRO segments are overlain by the Great Valley Group (GVG), and locally, an ophiolitic breccia separates the CRO from basal GVG strata. New stratigraphic, petrographic, and geochronologic data (3865 detrital and 68 igneous zircon U-Pb ages) from the upper CRO, ophiolitic breccia, and basal GVG strata clarify temporal relationships among the three units, constrain maximum depositional ages (MDAs), and identify provenance signatures of the ophiolitic breccia and basal GVG strata. Gabbroic rocks from the upper CRO yield zircon U-Pb ages of 168.0 ± 1.3 Ma and 165.1 ± 1.2 Ma. Prominent detrital-zircon age populations of the ophiolitic breccia and GVG strata comprise Jurassic and Jurassic–Early Cretaceous ages, respectively, with pre-Mesozoic ages in both that are consistent with sources of North America affinity. Combined with petrographic modal analyses that show abundant volcanic grains (> 50%), we interpret the breccia to be mainly derived from the underlying CRO, with limited input from the hinterland of North America, and the basal GVG to be derived from Mesozoic igneous and volcanic rocks of the Sierra Nevada–Klamath magmatic arc and hinterland. Analysis of detrital-zircon grains from the lower and upper ophiolitic breccia yields MDAs of ∼ 166 Ma and ∼ 151 Ma, respectively. Along-strike variation in Jurassic and Cretaceous MDAs from basal GVG strata range from ∼ 148 to 141 Ma, which are interpreted to reflect diachronous deposition in segmented depocenters during early development of the forearc. The ophiolitic breccia was deposited in a forearc position proximal to North America < 4 Myr before the onset of GVG deposition. A new tectonic model for early development of the GVf highlights the role of forearc extension coeval with magmatic arc compression during the earliest stages of basin development. 
    more » « less
  4. Determining the mechanisms by which the earliest continental crust was generated and reworked is important for constraining the evolution of Earth’s geodynamic, surface, and atmospheric conditions. However, the details of early plate tectonic settings often remain obscured by the intervening ~4 Ga of crustal recycling. Covariations of U, Nb, Sc, and Yb in zircon have been shown to faithfully reflect Phanerozoic whole-rock-based plate-tectonic discriminators and are therefore useful in distinguishing zircons crystallized in ridge, plume, and arc-like environments, both in the present and in deep time. However, application of these proxies to deciphering tectonic settings on the early Earth has thus far been limited to select portions of the detrital zircon record. Here, we present in situ trace-element and oxygen isotope compositions for magmatic zircons from crystalline crustal rocks of the Acasta Gneiss Complex and the Saglek-Hebron Complex, Canada. Integrated with information from whole-rock geochemistry and zircon U-Pb, Hf, and O isotopes, our zircon U-Nb-Sc-Yb results reveal that melting of hydrated basalt was not restricted to a single tectonomagmatic process during the Archean but was operative during the reworking of Hadean protocrust and the generation of juvenile crust within two cratons, as early as 3.9 Ga. We observe zircon trace-element compositions indicative of hydrous melting in settings that otherwise host seemingly differing whole-rock geochemistry, zircon Hf, and zircon O isotopes, suggesting contemporaneous operation of stagnant-lid (oceanic plateau) and mobile-lid (arc-like) regimes in the early Archean. 
    more » « less
  5. Abstract The occurrence of plate tectonic processes on Earth during the Paleoproterozoic is supported by ca. 2.2–1.8 Ga subduction‐collision orogens associated with the assembly of the Columbia‐Nuna supercontinent. Subsequent supercontinent breakup is evidence by global ca. 1.8–1.6 Ga large igneous provinces. The North China craton is notable for containing Paleoproterozoic orogens along its margins, herein named the Northern Margin orogen, yet the nature and timing of orogenic and extensional processes of these orogens and their role in the supercontinent cycle remain unclear. In this contribution, we present new field observations, U‐Pb zircon and baddeleyite geochronology dates, and major/trace‐element and isotope geochemical analyses from the northern margin of the North China craton that detail its Paleoproterozoic tectonic and magmatic history. Specifically, we record the occurrence of ca. 2.2–2.0 Ga magmatic arc rocks, ca. 1.9–1.88 Ga tectonic mélange and mylonitic shear zones, and folded lower Paleoproterozoic strata. These rocks were affected by ca. 1.9–1.8 Ga granulite‐facies metamorphism and ca. 1.87–1.78 Ga post‐collisional, extension‐related magmatism along the cratonal northern margin. We interpret that the generation and emplacement of these rocks, and the coupled metamorphic and magmatic processes, were related to oceanic subduction and subsequent continent‐continent collision during the Paleoproterozoic. The occurrence of ca. 1.77–1.73 Ga mafic dykes and ca. 1.75 Ga mylonitic shear zones along the northern margin of the North China craton may have been related to a regional mantle plume event. Our results are consistent with modern style plate tectonics, including oceanic subduction‐related plate convergence and continent‐continent collision, operating in the Paleoproterozoic. 
    more » « less