skip to main content


This content will become publicly available on October 1, 2024

Title: Mother Tubers of Wild Potato Solanum jamesii can Make Shoots Five Times
Solanum jamesii (jam) is the only wild potato species with its natural range primarily within the USA. Its tubers are known to have unusual abilities to survive various environmental stresses. It has been observed during germplasm collecting that mother tubers (those that produced the plant) often appear to be as firm and viable as the new daughter tubers. This prompted investigation of whether such mother tubers can produce multiple seasons of shoots (after periods of intervening cool storage to simulate winter). We compared serial production of 20 cm shoots by the same tuber in subsequent seasons of a set of 162 jam populations to that of a diverse set of 75 populations of 25 other potato species in greenhouse cultivation at the US Potato Genebank. It was rare for tubers of any species other than jam to produce even two serial shoots. But over half of jam populations were able to produce four serial shoots (M4), and 14 populations produced five serial shoots (M5) with tubers remaining firm. When we looked for associated traits, M4 and M5 populations have no apparent single geographic origin or similarity by DNA markers. But natural origin sites for M4 and M5 populations were significantly associated with ancient human habitation. This work reports a new survival mechanism in potato by which a tuber does not expend all resources in maximizing new shoot growth, but instead presumably restocks itself to survive several seasons if all other reproductive options fail. Future work could study the physiological and genetic basis of the trait, and ways it could have practical benefit to the crop.  more » « less
Award ID(s):
1827414
NSF-PAR ID:
10493106
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
American Journal of Potato Research
Volume:
100
Issue:
5
ISSN:
1099-209X
Page Range / eLocation ID:
407 to 412
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The circadian clock is an internal molecular oscillator and coordinates numerous physiological processes through regulation of molecular pathways. Tissue‐specific clocks connected by mobile signals have previously been found to run at different speeds inArabidopsis thalianatissues. However, tissue variation in circadian clocks in crop species is unknown. In this study, leaf and tuber global gene expression in cultivated potato under cycling and constant environmental conditions was profiled. In addition, we used a circadian‐regulated luciferase reporter construct to study tuber gene expression rhythms. Diel and circadian expression patterns were present among 17.9% and 5.6% of the expressed genes in the tuber. Over 500 genes displayed differential tissue specific diel phases. Intriguingly, few core circadian clock genes had circadian expression patterns, while all such genes were circadian rhythmic in cultivated tomato leaves. Furthermore, robust diel and circadian transcriptional rhythms were observed among detached tubers. Our results suggest alternative regulatory mechanisms and/or clock composition is present in potato, as well as the presence of tissue‐specific independent circadian clocks. We have provided the first evidence of a functional circadian clock in below‐ground storage organs, holding important implications for other storage root and tuberous crops.

     
    more » « less
  2. Diggle, Pam (Ed.)
    Abstract Premise: Plant domestication can be detected when transport, use, and manipulation of propagules impact reproductive functionality, especially in species with selfincompatible breeding systems. Methods: Evidence for human‐caused founder effect in the Four Corners potato (Solanum jamesii Torr.) was examined by conducting 526 controlled matings between archaeological and non‐archaeological populations from field‐collected tubers grown in a greenhouse. Specimens from 24 major herbaria and collection records from >160 populations were examined to determine which produced fruits. Results: Archaeological populations did not produce any fruits when self‐crossed or outcrossed between individuals from the same source. A weak ability to self‐ or outcross within populations was observed in non‐archaeological populations. Outcrossing between archaeological and non‐archaeological populations, however, produced fully formed, seed‐containing fruits, especially with a non‐archaeological pollen source. Fruit formation was observed in 51 of 162 occurrences, with minimal evidence of constraint by monsoonal drought, lack of pollinators, or spatial separation of suitable partners. Some archaeological populations (especially those along ancient trade routes) had records of fruit production (Chaco Canyon), while others (those in northern Arizona, western Colorado, and southern Utah) did not. Conclusions: The present study suggests that archaeological populations could have different origins at different times—some descending directly from large gene pools to the south and others derived from gardens already established around occupations. The latter experienced a chain of founder events, which presumably would further reduce genetic diversity and mating capability. Consequently, some archaeological populations lack the genetic ability to sexually reproduce, likely as the result of human‐caused founder effect. 
    more » « less
  3. Abstract Potato ( Solanum tuberosum L.) is the world’s most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production 1–4 . So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota , the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum . Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop. 
    more » « less
  4. Abstract

    Abstract.—Testing adaptive hypotheses about how continuous traits evolve in association with developmentally structured discrete traits, while accounting for the confounding influence of other, hidden, evolutionary forces, remains a challenge in evolutionary biology. For example, geophytes are herbaceous plants—with underground buds—that use underground storage organs (USOs) to survive extended periods of unfavorable conditions. Such plants have evolved multiple times independently across all major vascular plant lineages. Even within closely related lineages, however, geophytes show impressive variation in the morphological modifications and structures (i.e.,“types” of USOs) that allow them to survive underground. Despite the developmental and structural complexity of USOs, the prevailing hypothesis is that they represent convergent evolutionary “solutions” to a common ecological problem, though some recent research has drawn this conclusion into question. We extend existing phylogenetic comparative methods to test for links between the hierarchical discrete morphological traits associated with USOs and adaptation to environmental variables, using a phylogeny of 621 species in Liliales. We found that plants with different USO types do not differ in climatic niche more than expected by chance, with the exception of root morphology, where modified roots are associated with lower temperature seasonality. These findings suggest that root tubers may reflect adaptations to different climatic conditions than those represented by other types of USOs. Thus, the tissue type and developmental origin of the USO structure may influence the way it mediates ecological relationships, which draws into question the appropriateness of ascribing broad ecological patterns uniformly across geophytic taxa. This work provides a new framework for testing adaptive hypotheses and for linking ecological patterns across morphologically varying taxa while accounting for developmental (non-independent) relationships in morphological data. [Climatic niche evolution; geophytes; imperfect correspondence; macroevolution.].

     
    more » « less
  5. SUMMARY

    Wounding during mechanical harvesting and post‐harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post​‐harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound‐induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular–genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno‐suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar‐specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.

     
    more » « less