This report contains comprehensive findings from Phase One of our Wisconsin research study focused on undergraduate student military service members and veterans (SSM/Vs) at the University of Wisconsin–Green Bay (UW–Green Bay), UW-Madison, UW-Milwaukee, UW-Oshkosh, and UW-Stout. During Phase One of this study, reported here, SSM/V online surveys (n=623) and interviews (n=54) were administered in the spring of 2020. Findings in the report are centered on SSM/V demographics; high school, military, and university experiences among current STEM and non-STEM majors; career plans; life during COVID-19; and social support networks.
more »
« less
Madison Wisconsin Daily Meteorological Data 1869 - current
Daily air temperature, precipitation and snow depth data for Madison from 1869. For a full description of data prior to 1987 see Robertson, 1989 (Ph.D. Thesis). Raw data (in English units) prior to 1977 were assembled by Douglas Clark - Wisconsin State Climatologist. Data were converted to metric units and adjusted for temporal biases by Dale M. Robertson. Adjusted data represent the BEST estimated daily data and may be raw data. Daily temperature data prior to 1884 were estimated from 3 times per day sampling and biases are expected and should not be comparable with data after that time. For adjustments applied to various parameters see Robertson, 1989 Ph.D. Thesis UW-Madison. Douglas Clark had assembled and adjusted 1948 to 1977 data for his own research earlier. Data from 1989 to 1995 obtained from CD's at the Wis. State Climatologists Office. Air Temp adjusted to data at Truax Field. Data collected at Bascom Hall, 1-1-1869 to 9-30-1878. Data collected at North Hall, 10-1-1904 to 12-31-1947. Data collected at Browns Block, 10-1-1878 to 4-31-1883. Data collected at Truax Field (Admin BLDG), 1-1-1948 to 12-31-195. Data collected at North Hall, 5-1-1883 to 7-31-1883. Data collected at Truax Field (Center of Field), 1-1-1960 to Present. Data collected at Washburn observatory, 8-1-1883 to 9-30-1904. Wind data collected at Truax from 1-1-1947 to Present. Much of the data after 1990 were obtained in digital form from Ed Hopkins, UW-Meteorology Sampling Frequency: daily values Number of sites: 1
more »
« less
- Award ID(s):
- 2025982
- PAR ID:
- 10493198
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Distributional checklists of the extant, described species of five superfamilies of Hymenoptera of Canada, Alaska and Greenland are presented. In total, 296 species in 79 genera in 12 families are recorded: 55 species of Ceraphronoidea, classified in 10 genera in 2 families, 205 species of Cynipoidea in 58 genera in 5 families, 30 species of Evanioidea in 5 genera in 3 families of Evanioidea, 2 species of Stephanoidea in 2 genera in 1 family and 4 species of Trigonalyoidea in 4 genera in 1 family. Of the reported species, 281 (in 79 genera in 12 families) are listed from Canada, 31 (in 16 genera in 6 families) from Alaska, and 7 (in 5 genera in 2 families) from Greenland. The list includes 8 new generic records for Canada (1 Ceraphronoidea, 6 Cynipoidea and 1 Evanioidea) and 43 new Canadian species records (13 Ceraphronoidea, 28 Cynipoidea and 2 Evanioidea). For each species in Canada, distribution is tabulated by province or territory, except the province of Newfoundland and Labrador is divided into the island of Newfoundland and the region of Labrador. These checklists are compared with previous Nearctic and Palaearctic surveys, checklists and catalogues.Kleidotoma minimaProvancher, 1883 (Figitidae) is moved from this genus toHexacolaFörster, 1869 to formH. minimum(Provancher, 1883),comb. nov.Amblynotus slossonaeCrawford, 1917 (Figitidae) is moved fromMelanipsWalker, 1835 toAmphithectusHartig, 1840 formingA. slossonae(Crawford, 1917),comb. nov.more » « less
-
Abstract Mean daily to monthly precipitation averages peak in late July over eastern Colorado and some of the most damaging Front Range flash floods have occurred because of extreme 1-day rainfall events during this period. Tree-ring chronologies of adjusted latewood width in ponderosa pine from eastern Colorado are highly correlated with the highest 1-day rainfall totals occurring during this 2-week precipitation maximum in late July. A regional average of four adjusted latewood chronologies from eastern Colorado was used to reconstruct the single wettest day observed during the last two weeks of July. The regional chronology was calibrated with the CPC 0.25° × 0.25° Daily U.S. Unified Gauge-Based Analysis of Precipitation dataset and explains 65% of the variance in the highest 1-day late July precipitation totals in the instrumental data from 1948 to 1997. The reconstruction and instrumental data extend fully from 1779 to 2019 and indicate that the frequency of 1-day rainfall extremes in late July has increased since the late eighteenth century. The largest instrumental and reconstructed 1-day precipitation extremes are most commonly associated with the intrusion of a major frontal system into a deep layer of atmospheric moisture across eastern Colorado. These general synoptic conditions have been previously linked to extreme localized rainfall totals and widespread thunderstorm activity over Colorado during the summer season. Chronologies of adjusted latewood width in semiarid eastern Colorado constitute a proxy of weather time-scale rainfall events useful for investigations of long-term variability and for framing natural and potential anthropogenic forcing of precipitation extremes during this 2-week precipitation maximum in a long historical perspective.more » « less
-
Abstract. Understanding the role of atmospheric circulation anomalies on the surfacemass balance of the Greenland ice sheet (GrIS) is fundamental for improvingestimates of its current and future contributions to sea level rise. Here,we show, using a combination of remote sensing observations, regionalclimate model outputs, reanalysis data, and artificial neural networks, thatunprecedented atmospheric conditions (1948–2019) occurring in the summerof 2019 over Greenland promoted new record or close-to-record values ofsurfacemass balance (SMB), runoff, and snowfall. Specifically, runoff in 2019 ranked second withinthe 1948–2019 period (after 2012) and first in terms of surface massbalance negative anomaly for the hydrological year 1 September 2018–31 August 2019. The summer of 2019 was characterized by an exceptionalpersistence of anticyclonic conditions that, in conjunction with low albedoassociated with reduced snowfall in summer, enhanced the melt–albedofeedback by promoting the absorption of solar radiation and favoredadvection of warm, moist air along the western portion of the ice sheettowards the north, where the surface melt has been the highest since 1948.The analysis of the frequency of daily 500 hPa geopotential heights obtainedfrom artificial neural networks shows that the total number of days with thefive most frequent atmospheric patterns that characterized the summer of2019 was 5 standard deviations above the 1981–2010 mean, confirming theexceptional nature of the 2019 season over Greenland.more » « less
-
Abstract A model using upper-air meteorological variables in the US National Centers for Environmental Prediction and US National Center for Atmospheric Research (NCEP/NCAR) re-analysis database is used to extend net balance b n back to 1948 for seven glaciers in southern Norway. The observational record of another glacier, Storbreen, began in 1948. Over the observational record of each of the seven glaciers, correlation with Storbreen estimates b n more accurately than the upper-air model does for four of them and less accurately for three. In all seven cases, however, an average of the model and the Storbreen correlation is more accurate than either alone, so the average is used to reconstruct b n for years when it was not observed. For the seven glaciers other than Storbreen, a combined series is formed from observations during their period of record and from reconstructed values prior to then back to 1948. There are three distinct sections in all eight b n series: prior to 1989; 1989–1995, when the North Atlantic Oscillation index was strongly positive; and after 1995. The 1989–95 mean b n was anomalously positive because of both decreased ablation and especially increased accumulation. The mean b n since 1995 has been anomalously negative because of increased ablation, whilst accumulation has been nearly the same as over 1948–88. The first principal component of the eight 1949–2005 b n series explains 78% of the total variance, and the second explains 12%. Over 1949–88 there were no substantial shifts in b n or in either winter balance b w or summer balance b s at any of the seven glaciers where observations began after 1948, nor were there in the Storbreen record. There is a distinction between the three glaciers that gained mass over 1948–2005 and the five that lost mass. Each of the three that gained had accumulation-area ratio AAR ≥ 0.64 and < 0.7% of its area δS in the lowest tenth of its altitude range, while the five that lost had AAR ≤ 0.46 and 1.9 ≤ δS ≤ 4.4%. Because of these hypsometries, the five glaciers that lost mass now have an especially large ablation area.more » « less
An official website of the United States government
