Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs are possible progenitors of black hole mergers detected in gravitational waves by LIGO/VIRGO. To better understand the hydrodynamical evolution of BBHs interacting with the disc gas, we perform a suite of high-resolution 2D simulations of binaries in local disc (shearing-box) models, considering various binary mass ratios, eccentricities and background disc properties. We use the γ-law equation of state and adopt a robust post-processing treatment to evaluate the mass accretion rate, torque and energy transfer rate on the binary to determine its long-term orbital evolution. We find that circular comparable-mass binaries contract, with an orbital decay rate of a few times the mass doubling rate. Eccentric binaries always experience eccentricity damping. Prograde binaries with higher eccentricities or smaller mass ratios generally have slower orbital decay rates, with some extreme cases exhibiting orbital expansion. The averaged binary mass accretion rate depends on the physical size of the accretor. The accretion flows are highly variable, and the dominant variability frequency is the apparent binary orbital frequency (in the rotating frame around the central massive BH) for circular binaries but gradually shifts to the radial epicyclic frequency as the binary eccentricity increases. Our findings demonstrate that the dynamics of BBHs embedded in AGN discs is quite different from that of isolated binaries in their own circumbinary discs. Furthermore, our results suggest that the hardening time-scales of the binaries are much shorter than their migration time-scales in the disc, for all reasonable binary and disc parameters.
Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs offer a distinct dynamical channel to produce black hole mergers detected in gravitational waves by LIGO/Virgo. To understand their orbital evolution through interactions with the disc gas, we perform a suite of two-dimensional high-resolution, local shearing box, viscous hydrodynamical simulations of equal-mass binaries. We find that viscosity not only smooths the flow structure around prograde circular binaries,but also greatly raises their accretion rates. The torque associated with accretion may be overwhelmingly positive and dominate over the gravitational torque at a high accretion rate. However, the accreted angular momentum per unit mass decreases with increasing viscosity, making it easier to shrink the binary orbit. In addition, retrograde binaries still experience rapid orbital decay, and prograde eccentric binaries still experience eccentricity damping. Our numerical experiments further show that prograde binaries are more likely to be hardened if the physical sizes of the accretors are sufficiently small such that the accretion rate is reduced. The dependence of the binary accretion rate on the accretor size can be weaken through boosted accretion either due to a high viscosity or a more isothermal-like equation of state. Our results widen the explored parameter space for the hydrodynamics of embedded BBHs and demonstrate that their orbital evolution in AGN discs is a complex, multifaceted problem.
more » « less- PAR ID:
- 10493204
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 529
- Issue:
- 1
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 348-359
- Size(s):
- p. 348-359
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs offer a promising dynamical channel to produce black hole mergers that are detectable by LIGO/Virgo. Modelling the interactions between the disc gas and the embedded BBHs is crucial to understand their orbital evolution. Using a suite of 2D high-resolution simulations of prograde equal-mass circular binaries in local disc models, we systematically study how their hydrodynamical evolution depends on the equation of state (EOS; including the γ-law and isothermal EOS) and on the binary mass and separation scales (relative to the supermassive black hole mass and the Hill radius, respectively). We find that binaries accrete slower and contract in orbit if the EOS is far from isothermal such that the surrounding gas is diffuse, hot, and turbulent. The typical orbital decay rate is of the order of a few times the mass doubling rate. For a fixed EOS, the accretion flows are denser, hotter, and more turbulent around more massive or tighter binaries. The torque associated with accretion is often comparable to the gravitational torque, so both torques are essential in determining the long-term binary orbital evolution. We carry out additional simulations with non-accreting binaries and find that their orbital evolution can be stochastic and is sensitive to the gravitational softening length, and the secular orbital evolution can be very different from those of accreting binaries. Our results indicate that stellar-mass BBHs may be hardened efficiently under ideal conditions, namely less massive and wider binaries embedded in discs with a non-isothermal EOS.
-
ABSTRACT Many astrophysical environments, from star clusters and globular clusters to the discs of active galactic nuclei, are characterized by frequent interactions between stars and the compact objects that they leave behind. Here, using a suite of 3D hydrodynamics simulations, we explore the outcome of close interactions between $1\, \mathrm{M}_{\odot }$ stars and binary black holes (BBHs) in the gravitational wave regime, resulting in a tidal disruption event (TDE) or a pure scattering, focusing on the accretion rates, the back reaction on the BH binary orbital parameters, and the increase in the binary BH effective spin. We find that TDEs can make a significant impact on the binary orbit, which is often different from that of a pure scattering. Binaries experiencing a prograde (retrograde) TDE tend to be widened (hardened) by up to $\simeq 20{{\ \rm per\ cent}}$. Initially circular binaries become more eccentric by $\lesssim 10{{\ \rm per\ cent}}$ by a prograde or retrograde TDE, whereas the eccentricity of initially eccentric binaries increases (decreases) by a retrograde (prograde) TDE by $\lesssim 5{{\ \rm per\ cent}}$. Overall, a single TDE can generally result in changes of the gravitational-wave-driven merger time-scale by order unity. The accretion rates of both black holes are very highly super-Eddington, showing modulations (preferentially for retrograde TDEs) on a time-scale of the orbital period, which can be a characteristic feature of BBH-driven TDEs. Prograde TDEs result in the effective spin parameter χ to vary by ≲0.02, while χ ≳ −0.005 for retrograde TDEs.
-
null (Ed.)Stellar-mass black holes can become embedded within the gaseous disks of active galactic nuclei (AGNs). Afterwards, their interactions are mediated by their gaseous surroundings. In this work, we study the evolution of stellar-mass binary black holes (BBHs) embedded within AGN disks using a combination of three-dimensional hydrodynamic simulations and analytic methods, focusing on environments in which the AGN disk scale height H is ≳ the BBH sphere of influence. We model the local surroundings of the embedded BBHs using a wind tunnel formalism and characterize different accretion regimes based on the local properties of the disk, which range from wind-dominated to quasi-spherical. We use our simulations to develop prescriptions for mass accretion and drag for embedded BBHs. We use these prescriptions, along with AGN disk models that can represent the Toomre-unstable outer regions of AGN disks, to study the long-term evolution of the BBHs as they migrate through the disk. We find that BBHs typically merge within ≲5−30Myr , increasing their mass significantly in the process, allowing BBHs to enter (or cross) the pair-instability supernova mass gap. The rate at which gas is supplied to these BBHs often exceeds the Eddington limit, sometimes by several orders of magnitude. We conclude that most embedded BBHs will merge before migrating significantly in the disk. Depending on the conditions of the ambient gas and the distance to the system, LISA can detect the transition between the gas-dominated and gravitational wave dominated regime for inspiraling BBHs that are formed sufficiently close to the AGN ( ≲ 0.1 pc). We also discuss possible electromagnetic signatures during and following the inspiral, finding that it is generally unlikely but not inconceivable for the bolometric luminosity of the BBH to exceed that of the host AGN.more » « less
-
Abstract Stellar-mass black holes can become embedded within the disks of active galactic nuclei (AGNs). Afterwards, their interactions are mediated by their gaseous surroundings. Here, we study the evolution of stellar-mass binary black holes (BBHs) embedded within AGN disks using three-dimensional hydrodynamic simulations and analytic methods, focusing on environments where the AGN disk scale height
H is ≳ the BBH sphere of influence. We model the local surroundings of the embedded BBHs using a wind tunnel formalism and characterize different accretion regimes based on the local properties of the disk. We develop prescriptions for accretion and drag for embedded BBHs. Using these prescriptions with AGN disk models that can represent the Toomre-unstable outer regions of AGN disks, we study the long-term evolution of BBHs as they migrate through the disk. We find that BBHs typically merge within ≲1–30 Myr, increasing their mass significantly in the process, allowing BBHs to enter (or cross) the pair-instability supernova mass gap. The BBH accretion rate often exceeds the Eddington limit, sometimes by several orders of magnitude. Many embedded BBHs will merge before migrating significantly in the disk. We also discuss possible electromagnetic signatures during and following the inspiral, finding that it is generally unlikely for the bolometric luminosity of the BBH to exceed the AGN luminosity.