As active galactic nuclei (AGN) ‘turn on’, some stars end up embedded in accretion discs around supermassive black holes (SMBHs) on retrograde orbits. Such stars experience strong headwinds, aerodynamic drag, ablation, and orbital evolution on short timescales. The loss of orbital angular momentum in the first ∼0.1 Myr of an AGN leads to a heavy rain of stars (‘starfall’) into the inner disc and on to the SMBH. A large AGN loss cone (θAGN, lc) can result from binary scatterings in the inner disc and yield tidal disruption events (TDEs). Signatures of starfall include optical/UV flares that rise in luminosity over time, particularly in the inner disc. If the SMBH mass is $M_{\rm SMBH} \gtrsim 10^{8}\, \mathrm{M}_{\odot }$, flares truncate abruptly and the star is swallowed. If $M_{\rm SMBH}\lt 10^{8}\, \mathrm{M}_{\odot }$, and if the infalling orbit lies within θAGN, lc, the flare is followed by a TDE that can be prograde or retrograde relative to the AGN inner disc. Retrograde AGN TDEs are overluminous and shortlived as inplane ejecta collide with the inner disc and a lower AGN state follows. Prograde AGN TDEs add angular momentum to inner disc gas and so start off looking like regular TDEs but are followed by an AGN high state. Searches for such flare signatures test models of AGN ‘turn on’, SMBH mass, as well as disc properties and the embedded population.
Many astrophysical environments, from star clusters and globular clusters to the discs of active galactic nuclei, are characterized by frequent interactions between stars and the compact objects that they leave behind. Here, using a suite of 3D hydrodynamics simulations, we explore the outcome of close interactions between $1\, \mathrm{M}_{\odot }$ stars and binary black holes (BBHs) in the gravitational wave regime, resulting in a tidal disruption event (TDE) or a pure scattering, focusing on the accretion rates, the back reaction on the BH binary orbital parameters, and the increase in the binary BH effective spin. We find that TDEs can make a significant impact on the binary orbit, which is often different from that of a pure scattering. Binaries experiencing a prograde (retrograde) TDE tend to be widened (hardened) by up to $\simeq 20{{\ \rm per\ cent}}$. Initially circular binaries become more eccentric by $\lesssim 10{{\ \rm per\ cent}}$ by a prograde or retrograde TDE, whereas the eccentricity of initially eccentric binaries increases (decreases) by a retrograde (prograde) TDE by $\lesssim 5{{\ \rm per\ cent}}$. Overall, a single TDE can generally result in changes of the gravitationalwavedriven merger timescale by order unity. The accretion rates of both black holes are very highly superEddington, showing modulations (preferentially for retrograde TDEs) on a timescale of the orbital period, which can be a characteristic feature of BBHdriven TDEs. Prograde TDEs result in the effective spin parameter χ to vary by ≲0.02, while χ ≳ −0.005 for retrograde TDEs.
more » « less Award ID(s):
 2006839
 NSFPAR ID:
 10371036
 Publisher / Repository:
 Oxford University Press
 Date Published:
 Journal Name:
 Monthly Notices of the Royal Astronomical Society
 Volume:
 516
 Issue:
 2
 ISSN:
 00358711
 Page Range / eLocation ID:
 p. 22042217
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

ABSTRACT 
ABSTRACT When a star passes close to a supermassive black hole (BH), the BH’s tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the postdisruption phase of TDEs in general relativistic hydrodynamics (GRHD) using our GPUaccelerated code hamr. We carry out the first gridbased simulation of a deeppenetration TDE (β = 7) with realistic system parameters: a black holetostar mass ratio of 106, a parabolic stellar trajectory, and a nonzero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disc forms due to the dissipation of orbital energy with ∼20 per cent of the infalling material reaching the BH. The dissipation is initially dominated by violent selfintersections and later by stream–disc interactions near the pericentre. The selfintersections completely disrupt the incoming stream, resulting in five distinct selfintersection events separated by approximately 12 h and a flaring in the accretion rate. We also find that the disc is eccentric with mean eccentricity e ≈ 0.88. For our tilted TDE, we find only partial selfintersections due to nodal precession near pericentre. Although these partial intersections eject gas out of the orbital plane, an accretion disc still forms with a similar accreted fraction of the material to the aligned case. These results have important implications for disc formation in realistic tidal disruptions. For instance, the periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J1644+57.

ABSTRACT Stellarmass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs offer a distinct dynamical channel to produce black hole mergers detected in gravitational waves by LIGO/Virgo. To understand their orbital evolution through interactions with the disc gas, we perform a suite of twodimensional highresolution, local shearing box, viscous hydrodynamical simulations of equalmass binaries. We find that viscosity not only smooths the flow structure around prograde circular binaries,but also greatly raises their accretion rates. The torque associated with accretion may be overwhelmingly positive and dominate over the gravitational torque at a high accretion rate. However, the accreted angular momentum per unit mass decreases with increasing viscosity, making it easier to shrink the binary orbit. In addition, retrograde binaries still experience rapid orbital decay, and prograde eccentric binaries still experience eccentricity damping. Our numerical experiments further show that prograde binaries are more likely to be hardened if the physical sizes of the accretors are sufficiently small such that the accretion rate is reduced. The dependence of the binary accretion rate on the accretor size can be weaken through boosted accretion either due to a high viscosity or a more isothermallike equation of state. Our results widen the explored parameter space for the hydrodynamics of embedded BBHs and demonstrate that their orbital evolution in AGN discs is a complex, multifaceted problem.

ABSTRACT Stellarmass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs are possible progenitors of black hole mergers detected in gravitational waves by LIGO/VIRGO. To better understand the hydrodynamical evolution of BBHs interacting with the disc gas, we perform a suite of highresolution 2D simulations of binaries in local disc (shearingbox) models, considering various binary mass ratios, eccentricities and background disc properties. We use the γlaw equation of state and adopt a robust postprocessing treatment to evaluate the mass accretion rate, torque and energy transfer rate on the binary to determine its longterm orbital evolution. We find that circular comparablemass binaries contract, with an orbital decay rate of a few times the mass doubling rate. Eccentric binaries always experience eccentricity damping. Prograde binaries with higher eccentricities or smaller mass ratios generally have slower orbital decay rates, with some extreme cases exhibiting orbital expansion. The averaged binary mass accretion rate depends on the physical size of the accretor. The accretion flows are highly variable, and the dominant variability frequency is the apparent binary orbital frequency (in the rotating frame around the central massive BH) for circular binaries but gradually shifts to the radial epicyclic frequency as the binary eccentricity increases. Our findings demonstrate that the dynamics of BBHs embedded in AGN discs is quite different from that of isolated binaries in their own circumbinary discs. Furthermore, our results suggest that the hardening timescales of the binaries are much shorter than their migration timescales in the disc, for all reasonable binary and disc parameters.

Abstract Stellarmass black holes (sBHs) embedded in gaseous disks of active galactic nuclei (AGN) can be important sources of detectable gravitational radiation for LIGO/Virgo when they form binaries and coalesce due to orbital decay. In this paper, we study the effect of dynamical friction (DF) on the formation of BH binaries in AGN disks using
N body simulations. We employ two simplified models of DF, with the force on the BH depending on Δ , the velocity of the sBH relative to the background Keplerian gas. We integrate the motion of two sBHs initially on circular orbits around the central supermassive black hole (SMBH) and evaluate the probability of binary formation under various conditions. We find that both models of DF (with different dependence of the frictional coefficient on ∣Δv ∣) can foster the formation of binaries when the effective friction timescalev τ satisfies Ω_{K}τ ≲ 20–30 (where Ω_{K}is the Keplerian frequency around the SMBH): prograde binaries are formed when the DF is stronger (smallerτ ), while retrograde binaries dominate when the DF is weaker (largerτ ). We determine the distribution of both prograde and retrograde binaries as a function of initial orbital separation and the DF strength. Using our models of DF, we show that for a given sBH number density in the AGN disk, the formation rate of sBH binaries increases with decreasingτ and can reach a moderate value with a sufficiently strong DF.