skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Close encounters of stars with stellar-mass black hole binaries
ABSTRACT Many astrophysical environments, from star clusters and globular clusters to the discs of active galactic nuclei, are characterized by frequent interactions between stars and the compact objects that they leave behind. Here, using a suite of 3D hydrodynamics simulations, we explore the outcome of close interactions between $$1\, \mathrm{M}_{\odot }$$ stars and binary black holes (BBHs) in the gravitational wave regime, resulting in a tidal disruption event (TDE) or a pure scattering, focusing on the accretion rates, the back reaction on the BH binary orbital parameters, and the increase in the binary BH effective spin. We find that TDEs can make a significant impact on the binary orbit, which is often different from that of a pure scattering. Binaries experiencing a prograde (retrograde) TDE tend to be widened (hardened) by up to $$\simeq 20{{\ \rm per\ cent}}$$. Initially circular binaries become more eccentric by $$\lesssim 10{{\ \rm per\ cent}}$$ by a prograde or retrograde TDE, whereas the eccentricity of initially eccentric binaries increases (decreases) by a retrograde (prograde) TDE by $$\lesssim 5{{\ \rm per\ cent}}$$. Overall, a single TDE can generally result in changes of the gravitational-wave-driven merger time-scale by order unity. The accretion rates of both black holes are very highly super-Eddington, showing modulations (preferentially for retrograde TDEs) on a time-scale of the orbital period, which can be a characteristic feature of BBH-driven TDEs. Prograde TDEs result in the effective spin parameter χ to vary by ≲0.02, while χ ≳ −0.005 for retrograde TDEs.  more » « less
Award ID(s):
2006839
PAR ID:
10371036
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2204-2217
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT When a star passes close to a supermassive black hole (BH), the BH’s tidal forces rip it apart into a thin stream, leading to a tidal disruption event (TDE). In this work, we study the post-disruption phase of TDEs in general relativistic hydrodynamics (GRHD) using our GPU-accelerated code h-amr. We carry out the first grid-based simulation of a deep-penetration TDE (β = 7) with realistic system parameters: a black hole-to-star mass ratio of 106, a parabolic stellar trajectory, and a non-zero BH spin. We also carry out a simulation of a tilted TDE whose stellar orbit is inclined relative to the BH midplane. We show that for our aligned TDE, an accretion disc forms due to the dissipation of orbital energy with ∼20 per cent of the infalling material reaching the BH. The dissipation is initially dominated by violent self-intersections and later by stream–disc interactions near the pericentre. The self-intersections completely disrupt the incoming stream, resulting in five distinct self-intersection events separated by approximately 12 h and a flaring in the accretion rate. We also find that the disc is eccentric with mean eccentricity e ≈ 0.88. For our tilted TDE, we find only partial self-intersections due to nodal precession near pericentre. Although these partial intersections eject gas out of the orbital plane, an accretion disc still forms with a similar accreted fraction of the material to the aligned case. These results have important implications for disc formation in realistic tidal disruptions. For instance, the periodicity in accretion rate induced by the complete stream disruption may explain the flaring events from Swift J1644+57. 
    more » « less
  2. Abstract Dynamical interactions in dense star clusters could significantly influence the properties of black holes, leaving imprints on their gravitational-wave signatures. While previous studies have mostly focused on repeated black hole mergers for spin and mass growth, this work examines the impact of physical collisions and close encounters between black holes and (noncompact) stars. Using Monte CarloN-body models of dense star clusters, we find that a large fraction of black holes retained upon formation undergo collisions with stars. Within our explored cluster models, the proportion of binary black hole mergers affected by stellar collisions ranges from 10%–60%. If all stellar-mass black holes are initially nonspinning, we find that up to 40% of merging binary black holes may have components with dimensionless spin parameterχ ≳ 0.2 because of prior stellar collisions, while typically about 10% have spins nearχ = 0.7 from prior black hole mergers. We demonstrate that young star clusters are especially important environments, as they can produce collisions of black holes with very massive stars, allowing for significant spin-up of the black holes through accretion. Our predictions for black hole spin distributions from these stellar collisions highlight their sensitivity to accretion efficiency, underscoring the need for detailed hydrodynamic calculations to better understand the accretion physics following these interactions. 
    more » « less
  3. ABSTRACT We investigate the effect of the cutting-edge circumbinary disc (CBD) evolution models on massive black hole binary (MBHB) populations and the gravitational wave background (GWB). We show that CBD-driven evolution leaves a tell-tale signature in MBHB populations, by driving binaries towards an equilibrium eccentricity that depends on the binary mass ratio. We find high orbital eccentricities ($$e_{\rm b} \sim 0.5$$) as MBHBs enter multimessenger observable frequency bands. The CBD-induced eccentricity distribution of MBHB populations in observable bands is independent of the initial eccentricity distribution at binary formation, erasing any memory of eccentricities induced in the large-scale dynamics of merging galaxies. Our results suggest that eccentric MBHBs are the rule rather than the exception in upcoming transient surveys, provided that CBDs regularly form in MBHB systems. We show that the GWB amplitude is sensitive to CBD-driven preferential accretion onto the secondary, resulting in an increase in GWB amplitude $$A_{\rm yr^{-1}}$$ by over 100 per cent with just 10 per cent Eddington accretion. As we self-consistently allow for binary hardening and softening, we show that CBD-driven orbital expansion does not diminish the GWB amplitude, and instead increases the amplitude by a small amount. We further present detection rates and population statistics of MBHBs with $$M_{\rm b} \gtrsim 10^6 \, {\rm M}_{\odot }$$ in Laser Interferometer Space Antenna, showing that most binaries have equal mass ratios and can retain residual eccentricities up to $$e_{\rm b} \sim 10^{-3}$$ due to CBD-driven evolution. 
    more » « less
  4. Abstract We analyze accretion-rate time series for equal-mass binaries in coplanar gaseous disks spanning a continuous range of orbital eccentricities up to 0.8 for both prograde and retrograde systems. The dominant variability timescales match those of previous investigations; the binary orbital period is dominant for prograde binaries withe≳ 0.1, with a 5 × longer “lump” period taking over fore≲ 0.1. This lump period fades and drops from 5 × to 4.5 × the binary period aseapproaches 0.1, where it vanishes. For retrograde orbits, the binary orbital period dominates ate≲ 0.55 and is accompanied by a 2 × longer timescale periodicity at higher eccentricities. The shape of the accretion-rate time series varies with binary eccentricity. For prograde systems, the orientation of an eccentric disk causes periodic trading of accretion between the binary components in a ratio that we report as a function of binary eccentricity. We present a publicly available tool,binlite, that can rapidly (≲0.01 s) generate templates for the accretion-rate time series onto either binary component for choice of binary eccentricity below 0.8. As an example use case, we build lightcurve models where the accretion rate through the circumbinary disk and onto each binary component sets contributions to the emitted specific flux. We combine these rest-frame, accretion-variability lightcurves with observer-dependent Doppler boosting and binary self-lensing. This allows a flexible approach to generating lightcurves over a wide range of binary and observer parameter space. We envisionbinliteas the access point to a living database that will be updated with state-of-the-art hydrodynamical calculations as they advance. 
    more » « less
  5. ABSTRACT We assess the possibility of detecting both eccentricity and gas effects (migration and accretion) in the gravitational wave (GW) signal from LISA massive black hole binaries at redshift $z=1$. Gas induces a phase correction to the GW signal with an effective amplitude ($$C_{\rm g}$$) and a semimajor axis dependence (assumed to follow a power-law with slope $$n_{\rm g}$$). We use a complete model of the LISA response and employ a gas-corrected post-Newtonian inspiral-only waveform model TaylorF2Ecc. By using the Fisher formalism and Bayesian inference, we constrain $$C_{\rm g}$$ together with the initial eccentricity $$e_0$$, the total redshifted mass $$M_z$$, the primary-to-secondary mass ratio q, the dimensionless spins $$\chi _{1,2}$$ of both component BHs, and the time of coalescence $$t_c$$. We find that simultaneously constraining $$C_{\rm g}$$ and $$e_0$$ leads to worse constraints on both parameters with respect to when considered individually. For a standard thin viscous accretion disc around $$M_z=10^5~{\rm M}_{\odot }$$, $q=8$, $$\chi _{1,2}=0.9$$, and $$t_c=4$$ years MBHB, we can confidently measure (with a relative error of $$\lt 50$$ per cent) an Eddington ratio $${\rm f}_{\rm Edd}\sim 0.1$$ for a circular binary and $${\rm f}_{\rm Edd}\sim 1$$ for an eccentric system assuming $$\mathcal {O}(10)$$ stronger gas torque near-merger than at the currently explored much-wider binary separations. The minimum measurable eccentricity is $$e_0\gtrsim 10^{-2.75}$$ in vacuum and $$e_0\gtrsim 10^{-2}$$ in gas. A weak environmental perturbation ($${\rm f}_{\rm Edd}\lesssim 1$$) to a circular binary can be mimicked by an orbital eccentricity during inspiral, implying that an electromagnetic counterpart would be required to confirm the presence of an accretion disc. 
    more » « less