Abstract Mental distress among young people has increased in recent years. Research suggests that greenspace may benefit mental health. The objective of this exploratory study is to further understanding of place‐based differences (i.e., urbanity) in the greenspace‐mental health association. We leverage publicly available greenspace data sets to operationalize greenspace quantity, quality, and accessibility metrics at the community‐level. Emergency department visits for young people (ages 24 and under) were coded for: anxiety, depression, mood disorders, mental and behavioral disorders, and substance use disorders. Generalized linear models investigated the association between greenspace metrics and community‐level mental health burden; results are reported as prevalence rate ratios (PRR). Urban and suburban communities with the lowest quantities of greenspace had the highest prevalence of poor mental health outcomes, particularly for mood disorders in urban areas (PRR: 1.19, 95% CI: 1.16–1.21), and substance use disorders in suburban areas (PRR: 1.35, 95% CI: 1.28–1.43). In urban, micropolitan, and rural/isolated areas further distance to greenspace was associated with a higher prevalence of poor mental health outcomes; this association was most pronounced for substance use disorders (PRRUrban: 1.31, 95% CI: 1.29–1.32; PRRMicropolitan: 1.47, 95% CI: 1.43–1.51; PRRRural 2.38: 95% CI: 2.19–2.58). In small towns and rural/isolated communities, poor mental health outcomes were more prevalent in communities with the worst greenspace quality; this association was most pronounced for mental and behavioral disorders in small towns (PRR: 1.29, 95% CI: 1.24–1.35), and for anxiety disorders in rural/isolated communities (PRR: 1.61, 95% CI: 1.43–1.82). The association between greenspace metrics and mental health outcomes among young people is place‐based with variations across the rural‐urban continuum.
more »
« less
Spatial Analysis of Greenspace and Mental Health in North Carolina: Consideration of Rural and Urban Communities
Greenspace positively impacts mental health. Previous research has focused on the greenspace-mental health relationship in urban areas. Yet, little work has looked at rural areas despite rural communities reporting similar rates of poor mental health outcomes and higher rates of suicide mortality compared with urban areas. This ecological research study examined the following research questions: (1) Do public and/or private greenspaces affect the spatial distribution of mental health outcomes in North Carolina? (2) Does this relationship change with rurality? Emergency department data for 6 mental health conditions and suicide mortality data from 2009 to 2018 were included in this analysis. Spatial error and ordinary least squares regressions were used to examine the influence of public and private greenspace quantity on mental health in rural and urban communities. Results suggest greenspace benefits mental health in rural and urban communities. The strength of this relationship varies with urbanity and between public and private greenspaces, suggesting a more complex causal relationship. Given the high case counts and often lower density of mental health care facilities in rural areas, focusing attention on low-cost mental health interventions, such as greenspace, is important when considering rural mental health care.
more »
« less
- Award ID(s):
- 2044839
- PAR ID:
- 10493316
- Publisher / Repository:
- Wolter Kluwer (LWW) - Family and Community Health
- Date Published:
- Journal Name:
- Family & Community Health
- Volume:
- 46
- Issue:
- 3
- ISSN:
- 0160-6379
- Page Range / eLocation ID:
- 181 to 191
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Greenspaces in communities are critical for mitigating effects of climate change and have important impacts on health. Today, the availability of satellite imagery data combined with deep learning methods allows for automated greenspace analysis at high resolution. We propose a novel green color augmentation for deep learning model training to better detect and delineate types of greenspace (trees, grass) with satellite imagery. Our method outperforms gold standard methods, which use vegetation indices, by 33.1% (accuracy) and 77.7% (intersection-over-union; IoU). The proposed augmentation technique also shows improvement over state-of-the-art deep learning-based methods by 13.4% (IoU) and 3.11% (accuracy) for greenspace segmentation. We apply the method to high-resolution (0.27m/pixel) satellite images covering Karachi, Pakistan and illuminates an important need; Karachi has 4.17m2of greenspace per capita, which significantly lags World Health Organization recommendations. Moreover, greenspaces in Karachi are often in areas of economic development (Pearson’s correlation coefficient shows a 0.352 correlation between greenspaces and roads,p< 0.001), and corresponds to higher land surface temperature in localized areas. Our greenspace analysis and how it relates to infrastructure and climate is relevant to urban planners, public health and government professionals, and ultimately the public, for improved allocation and development of greenspaces.more » « less
-
1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning.more » « less
-
1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning.more » « less
-
Acharya, Binod (Ed.)This study compares pandemic experiences of Missouri’s 115 counties based on rurality and sociodemographic characteristics during the 1918–20 influenza and 2020–21 COVID-19 pandemics. The state’s counties and overall population distribution have remained relatively stable over the last century, which enables identification of long-lasting pandemic attributes. Sociodemographic data available at the county level for both time periods were taken from U.S. census data and used to create clusters of similar counties. Counties were also grouped by rural status (RSU), including fully (100%) rural, semirural (1–49% living in urban areas), and urban (>50% of the population living in urban areas). Deaths from 1918 through 1920 were collated from the Missouri Digital Heritage database and COVID-19 cases and deaths were downloaded from the Missouri COVID-19 dashboard. Results from sociodemographic analyses indicate that, during both time periods, average farm value, proportion White, and literacy were the most important determinants of sociodemographic clusters. Furthermore, the Urban/Central and Southeastern regions experienced higher mortality during both pandemics than did the North and South. Analyses comparing county groups by rurality indicated that throughout the 1918–20 influenza pandemic, urban counties had the highest and rural had the lowest mortality rates. Early in the 2020–21 COVID-19 pandemic, urban counties saw the most extensive epidemic spread and highest mortality, but as the epidemic progressed, cumulative mortality became highest in semirural counties. Additional results highlight the greater effects both pandemics had on county groups with lower rates of education and a lower proportion of Whites in the population. This was especially true for the far southeastern counties of Missouri (“the Bootheel”) during the COVID-19 pandemic. These results indicate that rural-urban and socioeconomic differences in health outcomes are long-standing problems that continue to be of significant importance, even though the overall quality of health care is substantially better in the 21 st century.more » « less
An official website of the United States government

