skip to main content


Title: Energy cascade in the Garrett–Munk spectrum of internal gravity waves

We study the spectral energy transfer due to wave–triad interactions in the Garrett–Munk spectrum of internal gravity waves based on a numerical evaluation of the collision integral in the wave kinetic equation. Our numerical evaluation builds on the reduction of the collision integral on the resonant manifold for a horizontally isotropic spectrum. We evaluate directly the downscale energy flux available for ocean mixing, whose value is in close agreement with the finescale parameterization. We further decompose the energy transfer into contributions from different mechanisms, including local interactions and three types of non-local interactions, namely parametric subharmonic instability, elastic scattering (ES) and induced diffusion (ID). Through analysis on the role of each mechanism, we resolve two long-standing paradoxes regarding the mechanism for forward cascade in frequency and zero ID flux for the GM76 spectrum. In addition, our analysis estimates the contribution of each mechanism to the energy transfer in each spectral direction, and reveals new understanding of the importance of local interactions and ES in the energy transfer.

 
more » « less
Award ID(s):
2241495
PAR ID:
10493357
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
975
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks.

     
    more » « less
  2. Abstract

    We present an investigation of the azimuthal bimodality of the wind-wave spectrum for waves shorter than the dominant scale comparing numerical model solutions of developing waves from idealized experiments using WAVEWATCH III (WW3). The wave solutions were forced with the “exact” Webb–Resio–Tracy (WRT) nonlinear energy fluxes and the direct interaction approximation (DIA) with three different combinations of wind input and breaking dissipation parameterizations. The WRT gives larger azimuthal bimodal amplitudes compared to the DIA regardless of wind input/dissipation. The widely used wind input/dissipation parameterizations (i.e., ST4 and ST6) generally give narrow directional distributions with relatively small bimodal amplitudes and lobe separations compared to field measurements. These biases are significantly improved by the breaking dissipation of Romero (R2019). Moreover, the ratio of the resolved cross- to downwind mean square slope is significantly lower for ST4 and ST6 compared to R2019. The overlap integral relevant for the prediction of microseisms is several orders of magnitude smaller for ST4 and ST6 compared to R2019, which nearly agrees with a semiempirical model.

    Significance Statement

    Spectral gravity wave models generally cannot accurately predict the directional distribution which impacts their ability to predict the resolved down- and crosswind mean square slopes and the generation of microseisms. Our analysis shows that a directionally narrow spectral energy dissipation, accounting for long-wave–short-wave modulation, can significantly improve the directional distribution of the wind-wave spectrum by coupling to the nonlinear energy fluxes due to wave–wave interactions, which has important implications for improved predictions of the mean square slopes and the generation of microseisms.

     
    more » « less
  3. Abstract

    Oceanic mixing, mostly driven by the breaking of internal waves at small scales in the ocean interior, is of major importance for ocean circulation and the ocean response to future climate scenarios. Understanding how internal waves transfer their energy to smaller scales from their generation to their dissipation is therefore an important step for improving the representation of ocean mixing in climate models. In this study, the processes leading to cross-scale energy fluxes in the internal wave field are quantified using an original decomposition approach in a realistic numerical simulation of the California Current. We quantify the relative contribution of eddy–internal wave interactions and wave–wave interactions to these fluxes and show that eddy–internal wave interactions are more efficient than wave–wave interactions in the formation of the internal wave continuum spectrum. Carrying out twin numerical simulations, where we successively activate or deactivate one of the main internal wave forcing, we also show that eddy–near-inertial internal wave interactions are more efficient in the cross-scale energy transfer than eddy–tidal internal wave interactions. This results in the dissipation being dominated by the near-inertial internal waves over tidal internal waves. A companion study focuses on the role of stimulated cascade on the energy and enstrophy fluxes.

     
    more » « less
  4. Abstract

    The nature and radial evolution of solar wind electrons in the suprathermal energy range are studied. A wave–particle interaction tensor and a Fokker–Planck Coulomb collision operator are introduced into the kinetic transport equation describing electron collisions and resonant interactions with whistler waves. The diffusion tensor includes diagonal and off-diagonal terms, and the Coulomb collision operator applies to arbitrary electron velocities describing collisions with both background protons and electrons. The background proton and electron densities and temperatures are based on previous turbulence models that mediate the supersonic solar wind. The electron velocity distribution functions and electron heat flux are calculated. Comparison and analysis of the numerical results with analytical solutions and observations in the near-Sun region are made. The numerical results reproduce well the creation of the sunward electron deficit observed in the near-Sun region. The deficit of the electron velocity distribution function below the core Maxwellian fit at low velocities results from Coulomb collisions, and the excess part above the core Maxwellian fit at high velocities is determined by strong wave–particle interactions.

     
    more » « less
  5. In this study, we revisit the spectral transfer model for the turbulent intensity in passive scalar transport (under large-scale anisotropic forcing), and a subsequent modification to the scaling of scalar variance cascade is presented. From the modified spectral transfer model, we obtain a revised scalar transport model using a fractional-order Laplacian operator that facilitates the robust inclusion of the non-local effects originating from large-scale anisotropy transferred across the multitude of scales in the turbulent cascade. We provide ana prioriestimate for the non-local model based on the scaling analysis of the scalar spectrum, and later examine our developed model through direct numerical simulation. We present a detailed analysis on the evolution of the scalar variance, high-order statistics of the scalar gradient and important two-point statistical metrics of the turbulent transport to make a comprehensive comparison between the non-local model and its standard version. Finally, we present an analysis that seamlessly reconciles the similarities between the developed model with the fractional-order subgrid-scale scalar flux model for large-eddy simulation (Akhavan-Safaeiet al.,J. Comput. Phys., vol. 446, 2021, 110571) when the filter scale approaches the dissipative scales of turbulent transport. In order to perform this task, we employ a Gaussian process regression model to predict the model coefficient for the fractional-order subgrid model.

     
    more » « less