skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy cascade in the Garrett–Munk spectrum of internal gravity waves
We study the spectral energy transfer due to wave–triad interactions in the Garrett–Munk spectrum of internal gravity waves based on a numerical evaluation of the collision integral in the wave kinetic equation. Our numerical evaluation builds on the reduction of the collision integral on the resonant manifold for a horizontally isotropic spectrum. We evaluate directly the downscale energy flux available for ocean mixing, whose value is in close agreement with the finescale parameterization. We further decompose the energy transfer into contributions from different mechanisms, including local interactions and three types of non-local interactions, namely parametric subharmonic instability, elastic scattering (ES) and induced diffusion (ID). Through analysis on the role of each mechanism, we resolve two long-standing paradoxes regarding the mechanism for forward cascade in frequency and zero ID flux for the GM76 spectrum. In addition, our analysis estimates the contribution of each mechanism to the energy transfer in each spectral direction, and reveals new understanding of the importance of local interactions and ES in the energy transfer.  more » « less
Award ID(s):
2241495
PAR ID:
10493357
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
975
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks. 
    more » « less
  2. Abstract High-frequency wave propagation in near-inertial wave shear has, for four decades, been considered fundamental in setting the spectral character of the oceanic internal wave continuum and for transporting energy to wave breaking. We compare idealized ray-tracing numerical results with metrics derived using a wave turbulence derivation for the kinetic equation and a path integral to study this specific process. Statistical metrics include the time-dependent ensemble mean vertical wavenumber, referred to as a mean drift; dispersion about the mean drift; time-lagged correlation estimates of wavenumber; and phase locking of the wave packets with the background. The path integral permits us to identify the mean drift as a resonant process and dispersion about that mean drift as nonresonant. At small inertial wave amplitudes, ray tracing, wave turbulence, and the path integral provide consistent descriptions for the mean drift of wave packets in the spectral domain and dispersion about the mean drift. Extrapolating these results to the background internal wavefield overpredicts downscale energy transports by an order of magnitude. At oceanic amplitudes, however, the numerics support diminished transport and dispersion that coincide with the mean drift time scale becoming similar to the lagged correlation time scale. We parse this as the transition to a non-Markovian process. Despite this decrease, numerical estimates of downscale energy transfer are still too large. We argue that residual differences result from an unwarranted discard of Bragg scattering resonances. Our results support replacing the long-standing interpretive paradigm of extreme scale-separated interactions with a more nuanced slate of “local” interactions in the kinetic equation. 
    more » « less
  3. Abstract A wavelet‐based method is re‐introduced in an oceanographic and spectral context to estimate wavenumber spectrum and spectral flux of kinetic energy and enstrophy. We apply this to a numerical simulation of idealized, doubly periodic quasi‐geostrophic flows, that is, the flow is constrained by the Coriolis force and vertical stratification. The double periodicity allows for a straightforward Fourier analysis as the baseline method. Our wavelet spectra agree well with the canonical Fourier approach but with the additional strengths of negating the necessity for the data to be periodic and being able to extract local anisotropies in the flow. Caution is warranted, however, when computing higher‐order quantities, such as spectral flux. 
    more » « less
  4. Abstract We present an investigation of the azimuthal bimodality of the wind-wave spectrum for waves shorter than the dominant scale comparing numerical model solutions of developing waves from idealized experiments using WAVEWATCH III (WW3). The wave solutions were forced with the “exact” Webb–Resio–Tracy (WRT) nonlinear energy fluxes and the direct interaction approximation (DIA) with three different combinations of wind input and breaking dissipation parameterizations. The WRT gives larger azimuthal bimodal amplitudes compared to the DIA regardless of wind input/dissipation. The widely used wind input/dissipation parameterizations (i.e., ST4 and ST6) generally give narrow directional distributions with relatively small bimodal amplitudes and lobe separations compared to field measurements. These biases are significantly improved by the breaking dissipation of Romero (R2019). Moreover, the ratio of the resolved cross- to downwind mean square slope is significantly lower for ST4 and ST6 compared to R2019. The overlap integral relevant for the prediction of microseisms is several orders of magnitude smaller for ST4 and ST6 compared to R2019, which nearly agrees with a semiempirical model. Significance StatementSpectral gravity wave models generally cannot accurately predict the directional distribution which impacts their ability to predict the resolved down- and crosswind mean square slopes and the generation of microseisms. Our analysis shows that a directionally narrow spectral energy dissipation, accounting for long-wave–short-wave modulation, can significantly improve the directional distribution of the wind-wave spectrum by coupling to the nonlinear energy fluxes due to wave–wave interactions, which has important implications for improved predictions of the mean square slopes and the generation of microseisms. 
    more » « less
  5. Abstract Oceanic mixing, mostly driven by the breaking of internal waves at small scales in the ocean interior, is of major importance for ocean circulation and the ocean response to future climate scenarios. Understanding how internal waves transfer their energy to smaller scales from their generation to their dissipation is therefore an important step for improving the representation of ocean mixing in climate models. In this study, the processes leading to cross-scale energy fluxes in the internal wave field are quantified using an original decomposition approach in a realistic numerical simulation of the California Current. We quantify the relative contribution of eddy–internal wave interactions and wave–wave interactions to these fluxes and show that eddy–internal wave interactions are more efficient than wave–wave interactions in the formation of the internal wave continuum spectrum. Carrying out twin numerical simulations, where we successively activate or deactivate one of the main internal wave forcing, we also show that eddy–near-inertial internal wave interactions are more efficient in the cross-scale energy transfer than eddy–tidal internal wave interactions. This results in the dissipation being dominated by the near-inertial internal waves over tidal internal waves. A companion study focuses on the role of stimulated cascade on the energy and enstrophy fluxes. 
    more » « less