Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract It is generally understood that the origin of ocean diapycnal diffusivity is primarily associated with the stratified turbulence produced by breaking internal (gravity) waves (IW). However, it requires significant effort to verify diffusivity values in ocean general circulation models in any particular geographical region of the ocean due to the scarcity of microstructure measurements. Recent analyses of downscaled IW fields from an internal‐wave‐admitting global ocean simulation into higher‐resolution regional configurations northwest of Hawaii have demonstrated a much‐improved fit of the simulated IW spectra to the in‐situ profiler measurements such as the Garrett‐Munk (GM) spectrum. Here, we employ this dynamically downscaled ocean simulation to directly analyze the nature of the IW‐breaking and the wave‐turbulence cascade in this region. We employ a modified version of the Kappa Profile Parameterization (KPP) to infer what the horizontally averaged vertical profile of diapycnal diffusivity should be, and compare this to the background profile that would be employed in the ocean component of a low‐resolution coupled climate model such as the Community Earth System Model (CESM) of the US National Center for Atmospheric Research (NCAR). In pursuing this goal, we also demonstrate that the wavefield in the high‐resolution regional domain is dominated by a well‐resolved spectrum of low‐mode IWs that are predictable by solving an appropriate eigenvalue problem for stratified flow. We finally suggest a new tentative approach to improve the KPP parameterization.more » « less
-
Abstract The internal wave (IW) continuum of a regional ocean model is studied in terms of the vertical spectral kinetic energy (KE) fluxes and transfers at high vertical wavenumbers. Previous work has shown that this model permits a partial representation of the IW cascade. In this work, vertical spectral KE flux is decomposed into catalyst, source, and destination vertical modes and frequency bands of nonlinear scattering, a framework that allows for the discernment of different types of nonlinear interactions involving both waves and eddies. Energy transfer within the supertidal IW continuum is found to be strongly dependent on resolution. Specifically, at a horizontal grid spacing of 1/48°, most KE in the supertidal continuum arrives there from lower-frequency modes through a single nonlinear interaction, whereas at 1/384° and with sufficient vertical resolution KE transfers within the supertidal IW continuum are comparable in size to KE transfer from lower-frequency modes. Additionally, comparisons are made with existing theoretical and observational work on energy pathways in the IW continuum. Induced diffusion (ID) is found to be associated with a weak forward frequency transfer within the supertidal IW continuum. ID is also limited to the highest vertical wavenumbers and is more sensitive to resolution relative to spectrally local interactions. At the same time, ID-like processes involving high-vertical-wavenumber near-inertial and tidal waves as well as low-vertical-wavenumber eddy fields are substantial, suggesting that the processes giving rise to a Garrett–Munk-like spectra in the present numerical simulation and perhaps the real ocean may be more varied than in idealized or wave-only frameworks.more » « less
-
We study the spectral energy transfer due to wave–triad interactions in the Garrett–Munk spectrum of internal gravity waves based on a numerical evaluation of the collision integral in the wave kinetic equation. Our numerical evaluation builds on the reduction of the collision integral on the resonant manifold for a horizontally isotropic spectrum. We evaluate directly the downscale energy flux available for ocean mixing, whose value is in close agreement with the finescale parameterization. We further decompose the energy transfer into contributions from different mechanisms, including local interactions and three types of non-local interactions, namely parametric subharmonic instability, elastic scattering (ES) and induced diffusion (ID). Through analysis on the role of each mechanism, we resolve two long-standing paradoxes regarding the mechanism for forward cascade in frequency and zero ID flux for the GM76 spectrum. In addition, our analysis estimates the contribution of each mechanism to the energy transfer in each spectral direction, and reveals new understanding of the importance of local interactions and ES in the energy transfer.more » « less
An official website of the United States government
