Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider a relaxed version of this problem in the setting of local algorithms. The relaxation is that the constructed subgraph is a sparse spanning subgraph containing at most (1+ϵ)n edges (where n is the number of vertices and ϵ is a given approximation/sparsity parameter). In the local setting, the goal is to quickly determine whether a given edge e belongs to such a subgraph, without constructing the whole subgraph, but rather by inspecting (querying) the local neighborhood of e. The challenge is to maintain consistency. That is, to provide answers concerning different edges according to the same spanning subgraph. We first show that for general bounded-degree graphs, the query complexity of any such algorithm must be Ω(n−−√). This lower bound holds for constant-degree graphs that have high expansion. Next we design an algorithm for (bounded-degree) graphs with high expansion, obtaining a result that roughly matches the lower bound. We then turn to study graphs that exclude a fixed minor (and are hence non-expanding). We design an algorithm for such graphs, which may have an unbounded maximum degree. The query complexity of this algorithm is poly(1/ϵ,h) (independent of n and the maximum degree), where h is the number of vertices in the excluded minor. Though our two algorithms are designed for very different types of graphs (and have very different complexities), on a high-level there are several similarities, and we highlight both the similarities and the differences. 
                        more » 
                        « less   
                    
                            
                            Parameterized and Approximation Algorithms for the Maximum Bimodal Subgraph Problem
                        
                    
    
            A vertex of a plane digraph is bimodal if all its incoming edges (and hence all its outgoing edges) are consecutive in the cyclic order around it. A plane digraph is bimodal if all its vertices are bimodal. Bimodality is at the heart of many types of graph layouts, such as upward drawings, level-planar drawings, and L-drawings. If the graph is not bimodal, the Maximum Bimodal Subgraph (MBS) problem asks for an embedding-preserving bimodal subgraph with the maximum number of edges. We initiate the study of the MBS problem from the parameterized complexity perspective with two main results: (i) we describe an FPT algorithm parameterized by the branchwidth (and hence by the treewidth) of the graph; (ii) we establish that MBS parameterized by the number of non-bimodal vertices admits a polynomial kernel. As the byproduct of these results, we obtain a subexponential FPT algorithm and an efficient polynomial-time approximation scheme for MBS. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2212130
- PAR ID:
- 10493390
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- 31st International Symposium on Graph Drawing and Network Visualization (GD)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Beyersdorff, Olaf; Kanté, Mamadou Moustapha; Kupferman, Orna; Lokshtanov, Daniel (Ed.)We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.more » « less
- 
            Meka, Raghu (Ed.)While graphs and abstract data structures can be large and complex, practical instances are often regular or highly structured. If the instance has sufficient structure, we might hope to compress the object into a more succinct representation. An efficient algorithm (with respect to the compressed input size) could then lead to more efficient computations than algorithms taking the explicit, uncompressed object as input. This leads to a natural question: when does knowing the input instance has a more succinct representation make computation easier? We initiate the study of the computational complexity of problems on factored graphs: graphs that are given as a formula of products and unions on smaller graphs. For any graph problem, we define a parameterized version that takes factored graphs as input, parameterized by the number of (smaller) ordinary graphs used to construct the factored graph. In this setting, we characterize the parameterized complexity of several natural graph problems, exhibiting a variety of complexities. We show that a decision version of lexicographically first maximal independent set is XP-complete, and therefore unconditionally not fixed-parameter tractable (FPT). On the other hand, we show that clique counting is FPT. Finally, we show that reachability is XNL-complete. Moreover, XNL is contained in FPT if and only if NL is contained in some fixed polynomial time.more » « less
- 
            We give a combinatorial polynomial-time algorithm to find a maximum weight independent set in perfect graphs of bounded degree that do not contain a prism or a hole of length four as an induced subgraph. An even pair in a graph is a pair of vertices all induced paths between which are even. An even set is a set of vertices every two of which are an even pair. We show that every perfect graph that does not contain a prism or a hole of length four as an induced subgraph has a balanced separator which is the union of a bounded number of even sets, where the bound depends only on the maximum degree of the graph. This allows us to solve the maximum weight independent set problem using the well-known submodular function minimization algorithm. Funding: This work was supported by the Engineering and Physical Sciences Research Council [Grant EP/V002813/1]; the National Science Foundation [Grants DMS-1763817, DMS-2120644, and DMS-2303251]; and Alexander von Humboldt-Stiftung.more » « less
- 
            Leroux, Jérôme; Lombardy, Sylvain; Peleg, David (Ed.)Feedback Vertex Set (FVS) is one of the most studied vertex deletion problems in the field of graph algorithms. In the decision version of the problem, given a graph G and an integer k, the question is whether there exists a set S of at most k vertices in G such that G-S is acyclic. It is one of the first few problems which were shown to be NP-complete, and has been extensively studied from the viewpoint of approximation and parameterized algorithms. The best-known polynomial time approximation algorithm for FVS is a 2-factor approximation, while the best known deterministic and randomized FPT algorithms run in time 𝒪^*(3.460^k) and 𝒪^*(2.7^k) respectively. In this paper, we contribute to the newly established area of parameterized approximation, by studying FVS in this paradigm. In particular, we combine the approaches of parameterized and approximation algorithms for the study of FVS, and achieve an approximation guarantee with a factor better than 2 in randomized FPT running time, that improves over the best known parameterized algorithm for FVS. We give three simple randomized (1+ε) approximation algorithms for FVS, running in times 𝒪^*(2^{εk}⋅ 2.7^{(1-ε)k}), 𝒪^*(({(4/(1+ε))^{(1+ε)}}⋅{(ε/3)^ε})^k), and 𝒪^*(4^{(1-ε)k}) respectively for every ε ∈ (0,1). Combining these three algorithms, we obtain a factor (1+ε) approximation algorithm for FVS, which has better running time than the best-known (randomized) FPT algorithm for every ε ∈ (0, 1). This is the first attempt to look at a parameterized approximation of FVS to the best of our knowledge. Our algorithms are very simple, and they rely on some well-known reduction rules used for arriving at FPT algorithms for FVS.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    