Irregular programs are found in many domains and tend to exhibit input-dependent control flow and memory accesses. This paper introduces the Indigo suite of important irregular parallel code patterns for testing verification and other tools. We studied many irregular CPU and GPU programs and extracted the key code patterns. Then, we methodically built variations of these patterns to alter the control-flow and memory-access behavior and/or introduce bugs, yielding the thousands of OpenMP and CUDA microbenchmarks in the suite. Indigo includes a set of generators to systematically create an unbounded number of inputs for each microbenchmark, which is essential to exercise the wide range of possible behaviors of input-dependent codes. To manage the millions of code and input combinations, Indigo provides the flexibility to generate user-defined subsets of the suite. Experiments with a subset of buggy and bug-free codes illustrate that irregular programs pose a significant challenge to both static and dynamic program verification tools. Moreover, such tools can perform quite differently across code patterns that contain the same bug.
more »
« less
Verifying Static Analysis Tools (Extended abstract)
We present a technique to stress-test the correctness of static analysis tools for CUDA programs, involving code generation and fixed point analysis. Our method revolves around a family of behavioral types called memory access protocols (MAPs), an abstraction used by Faial to determine whether CUDA programs are data-race free. In this paper, we introduce a code generation technique to represent MAPs in a form comprehensible to static analyzers (CUDA code). We use fixed point analysis to detect consistency errors in how programs are represented. We perform white-box testing with Faial, a tool we are already familiar with, to simultaneously fix bugs and facilitate further testing.
more »
« less
- Award ID(s):
- 2204986
- PAR ID:
- 10493426
- Publisher / Repository:
- International Symposium on Trends in Functional Programming
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bounded-exhaustive testing (BET), which exercises a program under test for all inputs up to some bounds, is an effective method for detecting software bugs. Systematic property-based testing is a BET approach where developers write test generation programs that describe properties of test inputs. Hybrid test generation programs offer the most expressive way to write desired properties by freely combining declarative filters and imperative generators. However, exploring hybrid test generation programs, to obtain test inputs, is both computationally demanding and challenging to parallelize. We present the first programming and execution models, dubbed Tempo, for parallel exploration of hybrid test generation programs. We describe two different strategies for mapping the computation to parallel hardware and implement them both for GPUs and CPUs. We evaluated Tempo by generating instances of various data structures commonly used for benchmarking in the BET domain. Additionally, we generated CUDA programs to stress test CUDA compilers, finding four bugs confirmed by the developers.more » « less
-
null (Ed.)Static analysis is a proven technique for catching bugs during software development. However, analysis tooling must approximate, both theoretically and in the interest of practicality. False positives are a pervading manifestation of such approximations—tool configuration and customization is therefore crucial for usability and directing analysis behavior. To suppress false positives, developers readily disable bug checks or insert comments that suppress spurious bug reports. Existing work shows that these mechanisms fall short of developer needs and present a significant pain point for using or adopting analyses. We draw on the insight that an analysis user always has one notable ability to influence analysis behavior regardless of analyzer options and implementation: modifying their program. We present a new technique for automated, generic, and temporary code changes that tailor to suppress spurious analysis errors. We adopt a rule-based approach where simple, declarative templates describe general syntactic changes for code patterns that are known to be problematic for the analyzer. Our technique promotes program transformation as a general primitive for improving the fidelity of analysis reports (we treat any given analyzer as a black box). We evaluate using five different static analyzers supporting three different languages (C, Java, and PHP) on large, real world programs (up to 800KLOC). We show that our approach is effective in sidestepping long-standing and complex issues in analysis implementations.more » « less
-
GPUs are progressively being integrated into modern society, playing a pivotal role in Artificial Intelligence and High-Performance Computing. Programmers need a deep understanding of the GPU programming model to avoid subtle data-races in their codes. Static verification that is sound and incomplete can guarantee data-race freedom, but the alarms it raises may be spurious and need to be validated. In this paper, we establish a True Positive Theorem for a static data-race detector for GPU programs, i.e., a result that identifies a class of programs for which our technique only raises true alarms. Our work builds on the formalism of memory access protocols, that models the concurrency operations of CUDA programs. The crux of our approach is an approximation analysis that can correctly identify true alarms, and pinpoint the conditions that make an alarm imprecise. Our approximation analysis detects when the reported locations are reachable (control independence, or CI), and when the reported locations are precise (data independence, or DI), as well identify inexact values in an alarm. In addition to a True Positive result for programs that are CI and DI, we establish the root causes of spurious alarms depending on whether CI or DI are present. We apply our theory to introduce FaialAA, the first sound and partially complete data-race detector. We evaluate FaialAA in three experiments. First, in a comparative study with the state-of-the-art tools, we show that FaialAA confirms more DRF programs than others while emitting 1.9× fewer potential alarms. Importantly, the approximation analysis of FaialAA detects 10 undocumented data-races. Second, in an experiment studying 6 commits of data-race fixes in open source projects OpenMM and Nvidia’s MegaTron, FaialAA confirmed the buggy and fixed versions of 5 commits, while others were only able to confirm 2. Third, we show that 59.5% of 2,770 programs are CI and DI, quantifying when the approximation analysis of FaialAA is complete. This paper is accompanied by the mechanized proofs of the theoretical results presented therein and a tool (FaialAA) implementing of our theory.more » « less
-
Concurrent programs are difficult to test due to their inherent non-determinism. To address this problem, testing often requires the exploration of thread schedules of a program; this can be time-consuming when applied to real-world programs. Software defect prediction has been used to help developers find faults and prioritize their testing efforts. Prior studies have used machine learning to build such predicting models based on designed features that encode the characteristics of programs. However, research has focused on sequential programs; to date, no work has considered defect prediction for concurrent programs, with program characteristics distinguished from sequential programs. In this paper, we present ConPredictor, an approach to predict defects specific to concurrent programs by combining both static and dynamic program metrics. Specifically, we propose a set of novel static code metrics based on the unique properties of concurrent programs. We also leverage additional guidance from dynamic metrics constructed based on mutation analysis. Our evaluation on four large open source projects shows that ConPredictor improved both within-project defect prediction and cross-project defect prediction compared to traditional features.more » « less
An official website of the United States government

