skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sound and Partially-Complete Static Analysis of Data-Races in GPU Programs
GPUs are progressively being integrated into modern society, playing a pivotal role in Artificial Intelligence and High-Performance Computing. Programmers need a deep understanding of the GPU programming model to avoid subtle data-races in their codes. Static verification that is sound and incomplete can guarantee data-race freedom, but the alarms it raises may be spurious and need to be validated. In this paper, we establish a True Positive Theorem for a static data-race detector for GPU programs, i.e., a result that identifies a class of programs for which our technique only raises true alarms. Our work builds on the formalism of memory access protocols, that models the concurrency operations of CUDA programs. The crux of our approach is an approximation analysis that can correctly identify true alarms, and pinpoint the conditions that make an alarm imprecise. Our approximation analysis detects when the reported locations are reachable (control independence, or CI), and when the reported locations are precise (data independence, or DI), as well identify inexact values in an alarm. In addition to a True Positive result for programs that are CI and DI, we establish the root causes of spurious alarms depending on whether CI or DI are present. We apply our theory to introduce FaialAA, the first sound and partially complete data-race detector. We evaluate FaialAA in three experiments. First, in a comparative study with the state-of-the-art tools, we show that FaialAA confirms more DRF programs than others while emitting 1.9× fewer potential alarms. Importantly, the approximation analysis of FaialAA detects 10 undocumented data-races. Second, in an experiment studying 6 commits of data-race fixes in open source projects OpenMM and Nvidia’s MegaTron, FaialAA confirmed the buggy and fixed versions of 5 commits, while others were only able to confirm 2. Third, we show that 59.5% of 2,770 programs are CI and DI, quantifying when the approximation analysis of FaialAA is complete. This paper is accompanied by the mechanized proofs of the theoretical results presented therein and a tool (FaialAA) implementing of our theory.  more » « less
Award ID(s):
2204986
PAR ID:
10574724
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Programming Languages
Volume:
8
Issue:
OOPSLA2
ISSN:
2475-1421
Page Range / eLocation ID:
2434 to 2461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Happens before-based dynamic analysis is the go-to technique for detecting data races in large scale software projects due to the absence of false positive reports. However, such analyses are expensive since they employ expensive vector clock updates at each event, rendering them usable only for in-house testing. In this paper, we present a sampling-based, randomized race detector that processes onlyconstantly manyevents of the input trace even in the worst case. This is the firstsub-lineartime (i.e., running ino(n) time wherenis the length of the trace) dynamic race detection algorithm; previous sampling based approaches like run in linear time (i.e.,O(n)). Our algorithm is a property tester for -race detection — it is sound in that it never reports any false positive, and on traces that are far, with respect to hamming distance, from any race-free trace, the algorithm detects an -race with high probability. Our experimental evaluation of the algorithm and its comparison with state-of-the-art deterministic and sampling based race detectors shows that the algorithm does indeed have significantly low running time, and detects races quite often. 
    more » « less
  2. Ali, Karim; Salvaneschi, Guido (Ed.)
    Much of the past work on dynamic data-race and determinacy-race detection algorithms for task parallelism has focused on structured parallelism with fork-join constructs and, more recently, with future constructs. This paper addresses the problem of dynamic detection of data-races and determinacy-races in task-parallel programs with promises, which are more general than fork-join constructs and futures. The motivation for our work is twofold. First, promises have now become a mainstream synchronization construct, with their inclusion in multiple languages, including C++, JavaScript, and Java. Second, past work on dynamic data-race and determinacy-race detection for task-parallel programs does not apply to programs with promises, thereby identifying a vital need for this work. This paper makes multiple contributions. First, we introduce a featherweight programming language that captures the semantics of task-parallel programs with promises and provides a basis for formally defining determinacy using our semantics. This definition subsumes functional determinacy (same output for same input) and structural determinacy (same computation graph for same input). The main theoretical result shows that the absence of data races is sufficient to guarantee determinacy with both properties. We are unaware of any prior work that established this result for task-parallel programs with promises. Next, we introduce a new Dynamic Race Detector for Promises that we call DRDP. DRDP is the first known race detection algorithm that executes a task-parallel program sequentially without requiring the serial-projection property; this is a critical requirement since programs with promises do not satisfy the serial-projection property in general. Finally, the paper includes experimental results obtained from an implementation of DRDP. The results show that, with some important optimizations introduced in our work, the space and time overheads of DRDP are comparable to those of more restrictive race detection algorithms from past work. To the best of our knowledge, DRDP is the first determinacy race detector for task-parallel programs with promises. 
    more » « less
  3. null (Ed.)
    Concurrent programs are notoriously hard to write correctly, as scheduling nondeterminism introduces subtle errors that are both hard to detect and to reproduce. The most common concurrency errors are (data) races, which occur when memory-conflicting actions are executed concurrently. Consequently, considerable effort has been made towards developing efficient techniques for race detection. The most common approach is dynamic race prediction: given an observed, race-free trace σ of a concurrent program, the task is to decide whether events of σ can be correctly reordered to a trace σ * that witnesses a race hidden in σ. In this work we introduce the notion of sync(hronization)-preserving races. A sync-preserving race occurs in σ when there is a witness σ * in which synchronization operations (e.g., acquisition and release of locks) appear in the same order as in σ. This is a broad definition that strictly subsumes the famous notion of happens-before races. Our main results are as follows. First, we develop a sound and complete algorithm for predicting sync-preserving races. For moderate values of parameters like the number of threads, the algorithm runs in Õ( N ) time and space, where N is the length of the trace σ. Second, we show that the problem has a Ω( N /log 2 N ) space lower bound, and thus our algorithm is essentially time and space optimal. Third, we show that predicting races with even just a single reversal of two sync operations is NP-complete and even W1-hard when parameterized by the number of threads. Thus, sync-preservation characterizes exactly the tractability boundary of race prediction, and our algorithm is nearly optimal for the tractable side. Our experiments show that our algorithm is fast in practice, while sync-preservation characterizes races often missed by state-of-the-art methods. 
    more » « less
  4. False alarms generated by physiological monitors can overwhelm clinical caretakers with a variety of alarms. The resulting alarm fatigue can be mitigated with alarm suppression. Before being deployed, such suppression mechanisms need to be evaluated through a costly observational study, which would determine and label the truly suppressible alarms. This paper proposes a lightweight method for evaluating alarm suppression without access to the true alarm labels. The method is based on the data programming paradigm, which combines noisy and cheap-to-obtain labeling heuristics into probabilistic labels. Based on these labels, the method estimates the sensitivity/specificity of a suppression mechanism and describes the likely outcomes of an observational study in the form of confidence bounds. We evaluate the proposed method in a case study of low SpO2 alarms using a dataset collected at Children's Hospital of Philadelphia and show that our method provides tight and accurate bounds that significantly outperform the naive comparative method. 
    more » « less
  5. GPUs offer parallelism as a commodity, but they are difficult to program correctly. Static analyzers that guarantee data-race freedom (DRF) are essential to help programmers establish the correctness of their programs (kernels). However, existing approaches produce too many false alarms and struggle to handle larger programs. To address these limitations we formalize a novel compositional analysis for DRF, based on memory access protocols. These protocols are behavioral types that codify the way threads interact over shared memory. Our work includes fully mechanized proofs of our theoretical results, the first mechanized proofs in the field of DRF analysis for GPU kernels. Our theory is implemented in Faial, a tool that outperforms the state-of-the-art. Notably, it can correctly verify at least 1.42× more real-world kernels, and it exhibits a linear growth in 4 out of 5 experiments, while others grow exponentially in all 5 experiments. 
    more » « less