skip to main content


This content will become publicly available on November 7, 2024

Title: Preparing quantum many-body scar states on quantum computers
Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware.  more » « less
Award ID(s):
1945395
NSF-PAR ID:
10493445
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften
Date Published:
Journal Name:
Quantum
Volume:
7
ISSN:
2521-327X
Page Range / eLocation ID:
1171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent experiments on Rydberg atom arrays have found evidence of anomalously slow thermalization and persistent density oscillations, which have been interpreted as a many-body analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred eigenstates originate from a “hard” kinetic constraint: the neighboring Rydberg atoms cannot be simultaneously excited. Here we propose a realization of quantum many-body scars in a 1D bosonic lattice model with a “soft” constraint in the form of density-assisted hopping. We discuss the relation of this model to the standard Bose-Hubbard model and possible experimental realizations using ultracold atoms. We find that this model exhibits similar phenomenology to the Rydberg atom chain, including weakly entangled eigenstates at high energy densities and the presence of a large number of exact zero energy states, with distinct algebraic structure.

     
    more » « less
  2. Abstract Quantum many-body phases offer unique properties and emergent phenomena, making them an active area of research. A promising approach for their experimental realization in model systems is to adiabatically follow the ground state of a quantum Hamiltonian from a product state of isolated particles to one that is strongly-correlated. Such protocols are relevant also more broadly in coherent quantum annealing and adiabatic quantum computing. Here we explore one such protocol in a system of ultracold atoms in an optical lattice. A fully magnetized state is connected to a correlated zero-magnetization state (an xy -ferromagnet) by a many-body spin rotation, realized by sweeping the detuning and power of a microwave field. The efficiency is characterized by applying a reverse sweep with a variable relative phase. We restore up to 50 % of the original magnetization independent of the relative phase, evidence for the formation of correlations. The protocol is limited by the many-body gap of the final state, which is inversely proportional to system size, and technical noise. Our experimental and theoretical studies highlight the potential and challenges for adiabatic preparation protocols to prepare many-body eigenstates of spin Hamiltonians. 
    more » « less
  3. Abstract

    The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the$${H}_{2}$$H2and$$LiH$$LiHmolecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.

     
    more » « less
  4. We present microscopic, multiple Landau level, (frustration-free and positive semi-definite) parent Hamiltonians whose ground states, realizing different quantum Hall fluids, are parton-like and whose excitations display either Abelian or non-Abelian braiding statistics. We prove ground state energy monotonicity theorems for systems with different particle numbers in multiple Landau levels, demonstrate S-duality in the case of toroidal geometry, and establish complete sets of zero modes of special Hamiltonians stabilizing parton-like states, specifically at filling factor\nu=2/3ν=2/3. The emergent Entangled Pauli Principle (EPP), introduced in [Phys. Rev. B 98, 161118(R) (2018)] and which defines the “DNA” of the quantum Hall fluid, is behind the exact determination of the topological characteristics of the fluid, including charge and braiding statistics of excitations, and effective edge theory descriptions. When the closed-shell condition is satisfied, the densest (i.e., the highest density and lowest total angular momentum) zero-energy mode is a unique parton state. We conjecture that parton-like states generally span the subspace of many-body wave functions with the two-bodyMM-clustering property within any given number of Landau levels, that is, wave functions withMMth-order coincidence plane zeroes and both holomorphic and anti-holomorphic dependence on variables. General arguments are supplemented by rigorous considerations for theM=3M=3case of fermions in four Landau levels. For this case, we establish that the zero mode counting can be done by enumerating certain patterns consistent with an underlying EPP. We apply the coherent state approach of [Phys. Rev. X 1, 021015 (2011)] to show that the elementary (localized) bulk excitations are Fibonacci anyons. This demonstrates that the DNA associated with fractional quantum Hall states encodes all universal properties. Specifically, for parton-like states, we establish a link with tensor network structures of finite bond dimension that emerge via root level entanglement.

     
    more » « less
  5. Abstract

    As the name indicates, a periodic orbit is a solution for a dynamical system that repeats itself in time. In the regular regime, periodic orbits are stable, while in the chaotic regime, they become unstable. The presence of unstable periodic orbits is directly associated with the phenomenon of quantum scarring, which restricts the degree of delocalization of the eigenstates and leads to revivals in the dynamics. Here, we study the Dicke model in the superradiant phase and identify two sets of fundamental periodic orbits. This experimentally realizable atom–photon model is regular at low energies and chaotic at high energies. We study the effects of the periodic orbits in the structure of the eigenstates in both regular and chaotic regimes and obtain their quantized energies. We also introduce a measure to quantify how much scarred an eigenstate gets by each family of periodic orbits and compare the dynamics of initial coherent states close and away from those orbits.

     
    more » « less