skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constant-Depth Preparation of Matrix Product States with Adaptive Quantum Circuits
Adaptive quantum circuits, which combine local unitary gates, midcircuit measurements, and feedforward operations, have recently emerged as a promising avenue for efficient state preparation, particularly on near-term quantum devices limited to shallow-depth circuits. Matrix product states (MPS) comprise a significant class of many-body entangled states, efficiently describing the ground states of one-dimensional gapped local Hamiltonians and finding applications in a number of recent quantum algorithms. Recently, it has been shown that the Affleck-Kennedy-Lieb-Tasaki state—a paradigmatic example of an MPS—can be exactly prepared with an adaptive quantum circuit of constant depth, an impossible feat with local unitary gates alone due to its nonzero correlation length [Smith , PRX Quantum 4, 020315 (2023)]. In this work, we broaden the scope of this approach and demonstrate that a diverse class of MPS can be exactly prepared using constant-depth adaptive quantum circuits, outperforming theoretically optimal preparation with unitary circuits. We show that this class includes short- and long-ranged entangled MPS, symmetry-protected topological (SPT) and symmetry-broken states, MPS with finite Abelian, non-Abelian, and continuous symmetries, resource states for MBQC, and families of states with tunable correlation length. Moreover, we illustrate the utility of our framework for designing constant-depth sampling protocols, such as for random MPS or for generating MPS in a particular SPT phase. We present sufficient conditions for particular MPS to be preparable in constant time, with global on-site symmetry playing a pivotal role. Altogether, this work demonstrates the immense promise of adaptive quantum circuits for efficiently preparing many-body entangled states and provides explicit algorithms that outperform known protocols to prepare an essential class of states.  more » « less
Award ID(s):
2310614
PAR ID:
10616651
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
PRX Quantum
Volume:
5
Issue:
3
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Preparing long-range entangled states poses significant challenges for near-term quantum devices. It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth. Here, we systematically explore the structure of states that can be prepared using constant-depth local circuits and a single MF round. Using the framework of tensor networks, the preparability under MF translates to tensor symmetries. We detail the structure of matrix-product states (MPSs) and projected entangled-pair states (PEPSs) that can be prepared using MF, revealing the coexistence of Clifford-like properties and magic. In one dimension, we show that states with Abelian-symmetry-protected topological order are a restricted class of MF-preparable states. In two dimensions, we parametrize a subset of states with Abelian topological order that are MF preparable. Finally, we discuss the analogous implementation of operators via MF, providing a structural theorem that connects to the well-known Clifford teleportation. Published by the American Physical Society2024 
    more » « less
  2. Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware. 
    more » « less
  3. Quantum circuits with gates (local unitaries) respecting a global symmetry have broad applications in quantum information science and related fields, such as condensed-matter theory and quantum thermodynamics. However, despite their widespread use, fundamental properties of such circuits are not well understood. Recently, it was found that generic unitaries respecting a global symmetry cannot be realized, even approximately, using gates that respect the same symmetry. This observation raises important open questions: What unitary transformations can be realized with k -local gates that respect a global symmetry? In other words, in the presence of a global symmetry, how does the locality of interactions constrain the possible time evolution of a composite system? In this work, we address these questions for the case of Abelian (commutative) symmetries and develop constructive methods for synthesizing circuits with such symmetries. Remarkably, as a corollary, we find that, while the locality of interactions still imposes additional constraints on realizable unitaries, certain restrictions observed in the case of non-Abelian symmetries do not apply to circuits with Abelian symmetries. For instance, in circuits with a general non-Abelian symmetry such as SU ( d ) , the unitary realized in a subspace with one irreducible representation (charge) of the symmetry dictates the realized unitaries in multiple other sectors with inequivalent representations of the symmetry. Furthermore, in certain sectors, rather than all unitaries respecting the symmetry, the realizable unitaries are the symplectic or orthogonal subgroups of this group. We prove that none of these restrictions appears in the case of Abelian symmetries. This result suggests that global non-Abelian symmetries may affect the thermalization of quantum systems in ways not possible under Abelian symmetries. Published by the American Physical Society2024 
    more » « less
  4. A basic question in the theory of fault-tolerant quantum computation is to understand the fundamental resource costs for performing a universal logical set of gates on encoded qubits to arbitrary accuracy. Here we consider qubits encoded with constant space overhead (i.e. finite encoding rate) in the limit of arbitrarily large code distance d through the use of topological codes associated to triangulations of hyperbolic surfaces. We introduce explicit protocols to demonstrate how Dehn twists of the hyperbolic surface can be implemented on the code through constant depth unitary circuits, without increasing the space overhead. The circuit for a given Dehn twist consists of a permutation of physical qubits, followed by a constant depth local unitary circuit, where locality here is defined with respect to a hyperbolic metric that defines the code. Applying our results to the hyperbolic Fibonacci Turaev-Viro code implies the possibility of applying universal logical gate sets on encoded qubits through constant depth unitary circuits and with constant space overhead. Our circuits are inherently protected from errors as they map local operators to local operators while changing the size of their support by at most a constant factor; in the presence of noisy syndrome measurements, our results suggest the possibility of universal fault tolerant quantum computation with constant space overhead and time overhead of O ( d / log ⁡ d ) . For quantum circuits that allow parallel gate operations, this yields the optimal scaling of space-time overhead known to date. 
    more » « less
  5. Recently, Bravyi, Gosset, and Konig (Science, 2018) exhibited a search problem called the 2D Hidden Linear Function (2D HLF) problem that can be solved exactly by a constant-depth quantum circuit using bounded fan-in gates (or QNC^0 circuits), but cannot be solved by any constant-depth classical circuit using bounded fan-in AND, OR, and NOT gates (or NC^0 circuits). In other words, they exhibited a search problem in QNC^0 that is not in NC^0. We strengthen their result by proving that the 2D HLF problem is not contained in AC^0, the class of classical, polynomial-size, constant-depth circuits over the gate set of unbounded fan-in AND and OR gates, and NOT gates. We also supplement this worst-case lower bound with an average-case result: There exists a simple distribution under which any AC^0 circuit (even of nearly exponential size) has exponentially small correlation with the 2D HLF problem. Our results are shown by constructing a new problem in QNC^0, which we call the Parity Halving Problem, which is easier to work with. We prove our AC^0 lower bounds for this problem, and then show that it reduces to the 2D HLF problem. 
    more » « less