skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dissolved oxygen, temperature, chlorophyll-a, total phosphorus, total nitrogen, and dissolved organic carbon at multiple depths in 822 lakes from 1921-2022
Rapid changes in climate and land use are having substantial and interacting impacts on lake water quality around the world. Here, we synthesized time-series data for dissolved oxygen, temperature, chlorophyll-a, total phosphorus, total nitrogen, and dissolved organic carbon at multiple depths in 822 lakes to facilitate analyses of these changes. The dataset extends from 1921–2022, with a median data duration of 29 years (range 5-102) and a median of 5 unique sampling dates per year at each lake. Lakes in the dataset have a median depth of 12.5 m (range 1.5–480 m), median surface area of 85.4 ha (range: 0.5–237000 ha) and median elevation of 264 m (range: -215–2804). The lakes are located in 18 countries across 5 continents, with latitudes ranging from -42.6 to 68.3. To facilitate interoperability with other large-scale datasets, each lake is linked to a unique hydroLAKES lake ID when possible (n = 683).  more » « less
Award ID(s):
2025982
PAR ID:
10493449
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding controls on primary productivity is essential for describing ecosystems and their responses to environmental change. Lake primary production is strongly controlled by inputs of nutrients and colored dissolved organic matter. While past studies have developed mathematical models of this nutrient-color paradigm, broad empirical tests of these models are scarce. We compiled data from 58 diverse and globally distributed and mostly temperate lakes to test such a model and improve understanding and prediction of the controls on lake primary production. These lakes varied widely in size (0.02-2300 km2), pelagic gross primary production (20-8000 mg C m-2 d-1), and other characteristics. The data package includes high-frequency dissolved oxygen, water temperature, wind speed, and solar radiation data as well as daily estimates of GPP and ER derived from those data. In addition, the data package includes median in-lake and stream concentrations of dissolved organic carbon and total phosphorus for a subset of 18 of those lakes. 
    more » « less
  2. null (Ed.)
    Abstract. Lakes in permafrost regions are dynamic landscapecomponents and play an important role for climate change feedbacks. Lakeprocesses such as mineralization and flocculation of dissolved organiccarbon (DOC), one of the main carbon fractions in lakes, contribute to thegreenhouse effect and are part of the global carbon cycle. These processesare in the focus of climate research, but studies so far are limited to specificstudy regions. In our synthesis, we analyzed 2167 water samples from 1833lakes across the Arctic in permafrost regions of Alaska, Canada, Greenland,and Siberia to provide first pan-Arctic insights for linkages between DOCconcentrations and the environment. Using published data and unpublisheddatasets from the author team, we report regional DOC differences linked tolatitude, permafrost zones, ecoregions, geology, near-surface soil organiccarbon contents, and ground ice classification of each lake region. The lakeDOC concentrations in our dataset range from 0 to1130 mg L−1 (10.8 mg L−1 median DOC concentration). Regarding thepermafrost regions of our synthesis, we found median lake DOC concentrationsof 12.4 mg L−1 (Siberia), 12.3 mg L−1 (Alaska),10.3 mg L−1 (Greenland), and 4.5 mg L−1 (Canada). Our synthesisshows a significant relationship between lake DOC concentration and lakeecoregion. We found higher lake DOC concentrations at boreal permafrostsites compared to tundra sites. We found significantly higher DOCconcentrations in lakes in regions with ice-rich syngenetic permafrostdeposits (yedoma) compared to non-yedoma lakes and a weak but significantrelationship between soil organic carbon content and lake DOC concentrationas well as between ground ice content and lake DOC. Our pan-Arctic datasetshows that the DOC concentration of a lake depends on its environmentalproperties, especially on permafrost extent and ecoregion, as well asvegetation, which is the most important driver of lake DOC in this study.This new dataset will be fundamental to quantify a pan-Arctic lake DOC poolfor estimations of the impact of lake DOC on the global carbon cycle andclimate change. 
    more » « less
  3. Abstract Declining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep‐water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e., very low DO) during a given summer begets increasingly severe occurrences of anoxia in following summers. Specifically, anoxic conditions can promote nutrient release from sediments, thereby stimulating phytoplankton growth, and subsequent phytoplankton decomposition can fuel heterotrophic respiration, resulting in increased spatial extent and duration of anoxia. However, while the individual relationships in this feedback are well established, to our knowledge, there has not been a systematic analysis within or across lakes that simultaneously demonstrates all of the mechanisms necessary to produce a positive feedback that reinforces anoxia. Here, we compiled data from 656 widespread temperate lakes and reservoirs to analyze the proposed anoxia begets anoxia feedback. Lakes in the dataset span a broad range of surface area (1–126,909 ha), maximum depth (6–370 m), and morphometry, with a median time‐series duration of 30 years at each lake. Using linear mixed models, we found support for each of the positive feedback relationships between anoxia, phosphorus concentrations, chlorophyllaconcentrations, and oxygen demand across the 656‐lake dataset. Likewise, we found further support for these relationships by analyzing time‐series data from individual lakes. Our results indicate that the strength of these feedback relationships may vary with lake‐specific characteristics: For example, we found that surface phosphorus concentrations were more positively associated with chlorophyllain high‐phosphorus lakes, and oxygen demand had a stronger influence on the extent of anoxia in deep lakes. Taken together, these results support the existence of a positive feedback that could magnify the effects of climate change and other anthropogenic pressures driving the development of anoxia in lakes around the world. 
    more » « less
  4. Abstract Growth of macroscale limnological research has been accompanied by an increase in secondary datasets compiled from multiple sources. We examined patterns of data availability in LAGOS‐NE, a dataset derived from 87 sources, to identify biases in availability of lake water quality data and to consider how such biases might affect perceived patterns at a subcontinental scale. Of eight common water quality parameters, variables indicative of trophic state (Secchi, chlorophyll, and total P) were most abundant in terms of total observations, lakes sampled, and long‐term records, whereas carbon variables (true color and dissolved organic carbon) were scarcest. Most data were collected during summer from larger (≥ 20 ha) lakes over 1–3 yr. Approximately 80% of data for each variable is derived from ~ 20% of sampled lakes. Long‐term (≥ 20 yr) records were rare and spatially clustered. Data availability is linked to major management challenges (eutrophication and acid rain), citizen science, and a few programs that quantify C and N variables. Resampling exercises suggested that correcting for the surface area sampling bias did not substantially change statistical distributions of the eight variables. Further, estimating a lake's long‐term median Secchi, chlorophyll, and total P using average record lengths had high uncertainty, but modest increases in sample size to > 5 yr yielded estimates with manageable error. Although the specific nature of sampling biases may vary among regions, we expect that they are widespread. Thus, large integrated datasets can and should be used to identify tendencies in how lakes are studied and to address these biases as part broad‐scale limnological investigations. 
    more » « less
  5. Depth profiles of water temperature on 1m intervals from 0.1 to 9 m depth; dissolved oxygen at 5 and 9 m depth; pressure at 9 m depth; and temperature, dissolved oxygen, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, fluorescent dissolved organic matter, and pressure at ~1.6 m depth were collected with a suite of high-frequency sensors at Falling Creek Reservoir (Vinton, Virginia, USA) on the 10-minute scale in 2018-2022. Falling Creek Reservoir is owned and managed by the Western Virginia Water Authority as a primary drinking water source for Roanoke, Virginia. This data product consists of one dataset compiled from water temperature data measured at multiple depths by thermistors, two dissolved oxygen sensors at multiple depths, pressure measured at one depth, and a YSI EXO2 sonde that measures temperature, dissolved oxygen, pressure, conductivity, specific conductance, chlorophyll a, phycocyanin, total dissolved solids, and fluorescent dissolved organic matter, at one depth, all measured at the deepest site of the reservoir adjacent to the dam. 
    more » « less