Abstract Early in their lives, planets endure extreme amounts of ionizing radiation from their host stars. For planets with primordial hydrogen and helium-rich envelopes, this can lead to substantial mass loss. Direct observations of atmospheric escape in young planetary systems can help elucidate this critical stage of planetary evolution. In this work, we search for metastable helium absorption—a tracer of tenuous gas in escaping atmospheres—during transits of three planets orbiting the young solar analog V1298 Tau. We characterize the stellar helium line using HET/HPF, and find that it evolves substantially on timescales of days to months. The line is stable on hour-long timescales except for one set of spectra taken during the decay phase of a stellar flare, where absoprtion increased with time. Utilizing a beam-shaping diffuser and a narrowband filter centered on the helium feature, we observe four transits with Palomar/WIRC: two partial transits of planet d ( P = 12.4 days), one partial transit of planet b ( P = 24.1 days), and one full transit of planet c ( P = 8.2 days). We do not detect the transit of planet c, and we find no evidence of excess absorption for planet b, with Δ R b / R ⋆ < 0.019 in our bandpass. We find a tentative absorption signal for planet d with Δ R d / R ⋆ = 0.0205 ± 0.054, but the best-fit model requires a substantial (−100 ± 14 minutes) transit-timing offset on a two-month timescale. Nevertheless, our data suggest that V1298 Tau d may have a high present-day mass-loss rate, making it a priority target for follow-up observations.
more »
« less
A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation
Abstract Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.
more »
« less
- PAR ID:
- 10493488
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 167
- Issue:
- 4
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 142
- Size(s):
- Article No. 142
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Atmospheric escape shapes exoplanet evolution and star–planet interactions, with HeI10830 Å absorption serving as a key tracer of mass loss in hot gas giants. However, transit depths vary significantly across observed systems for reasons that remain poorly understood. HD209458b, the archetypal hot-Jupiter, exhibits relatively weak HeI10830 Å and Hαabsorption, which has been interpreted as evidence for a high H/He ratio (98/2), possibly due to diffusive separation. To investigate this possibility and other processes that control these transit depths, we reassess excitation and de-excitation rates for metastable helium and explore the impact of diffusion processes, stellar activity, and tidal forces on the upper atmosphere and transit depths using a model framework spanning the whole atmosphere. Our model reproduces the observed HeItransit depth and Hαupper limit, showing strong diffusive separation. We match the observations assuming a photoelectron efficiency of 20%–40%, depending on the composition of the atmosphere, corresponding to mass-loss rates of 1.9–3 × 1010g s−1. We find that the HeI10830 Å transit depth is sensitive to both stellar activity and diffusion processes, while Hαis largely unaffected due to its strong dependence on Lyαexcitation. These differences may help explain the system-to-system scatter seen in population-level studies of the HeIline. While HeIdata alone may not tightly constrain mass-loss rates or temperatures, they do confirm atmospheric escape and help narrow the viable parameter space when interpreted with physically motivated models. Simultaneous observations of HeI, Hα, and stellar activity indicators provide powerful constraints on upper atmosphere dynamics and composition, even in the absence of full transmission spectra.more » « less
-
Despite the thousands of planets in orbit around stars known to date, the mechanisms of planetary formation, migration, and atmospheric loss remain unresolved. In this work, we confirm the planetary nature of a young Saturn-size planet transiting a solar-type star every 8.03 d, TOI-1135 b. The age of the parent star is estimated to be in the interval of 125-1000 Myr based on various activity and age indicators, including its stellar rotation period of 5.13 ± 0.27 days and the intensity of photospheric lithium. We obtained follow-up photometry and spectroscopy, including precise radial velocity measurements using the CARMENES spectrograph, which together with the TESS data allowed us to fully characterise the parent star and its planet. As expected for its youth, the star is rather active and shows strong photometric and spectroscopic variability correlating with its rotation period. We modelled the stellar variability using Gaussian process regression. We measured the planetary radius at 9.02 ± 0.23R⊕(0.81 ± 0.02RJup) and determined a 3σupper limit of < 51.4M⊕(< 0.16MJup) on the planetary mass by adopting a circular orbit. Our results indicate that TOI-1135 b is an inflated planet less massive than Saturn or Jupiter but with a similar radius, which could be in the process of losing its atmosphere by photoevaporation. This new young planet occupies a region of the mass-radius diagram where older planets are scarse, and it could be very helpful to understanding the lower frequency of planets with sizes between Neptune and Saturn.more » « less
-
ABSTRACT Transit timing variations (TTVs) can be induced by a range of physical phenomena, including planet–planet interactions, planet–moon interactions, and stellar activity. Recent work has shown that roughly half of moons would induce fast TTVs with a short period in the range of 2–4 orbits of its host planet around the star. An investigation of the Kepler TTV data in this period range identified one primary target of interest, Kepler-1513 b. Kepler-1513 b is a $$8.05^{+0.58}_{-0.40}$$ R⊕ planet orbiting a late G-type dwarf at $$0.53^{+0.04}_{-0.03}$$ au. Using Kepler photometry, this initial analysis showed that Kepler-1513 b’s TTVs were consistent with a moon. Here, we report photometric observations of two additional transits nearly a decade after the last Kepler transit using both ground-based observations and space-based photometry with TESS. These new transit observations introduce a previously undetected long period TTV, in addition to the original short period TTV signal. Using the complete transit data set, we investigate whether a non-transiting planet, a moon, or stellar activity could induce the observed TTVs. We find that only a non-transiting perturbing planet can reproduce the observed TTVs. We additionally perform transit origami on the Kepler photometry, which independently applies pressure against a moon hypothesis. Specifically, we find that Kepler-1513 b’s TTVs are consistent with an exterior non-transiting ∼Saturn mass planet, Kepler-1513 c, on a wide orbit, $$\sim 5~{{\ \rm per \, cent}}$$ outside a 5:1 period ratio with Kepler-1513 b. This example introduces a previously unidentified cause for planetary interlopers in the exomoon corridor, namely an insufficient baseline of observations.more » « less
-
Exoplanets in the ultra-hot Jupiter regime provide an excellent laboratory for testing the impact of stellar irradiation on the dynamics and chemical composition of gas giant atmospheres. In this study, we observed two transits of the ultra-hot Jupiter WASP-189 b with MAROON-X/Gemini-North to probe its high-altitude atmospheric layers, using strong absorption lines. We derived posterior probability distributions for the planetary and stellar parameters by calculating the stellar spectrum behind the planet at every orbital phase during the transit. This was used to correct the Rossiter–McLaughlin imprint on the transmission spectra. Using differential transmission spectroscopy, we detect strong absorption lines of Ca+, Ba+, Na, Hα, Mg, Fe, and Fe+, providing an unprecedented and detailed view of the atmospheric chemical composition. Ca+absorption is particularly well suited for analysis through time-resolved narrow-band spectroscopy, owing to its transition lines formed in high-altitude layers. The spectral absorption lines show no significant blueshifts that would indicate high-altitude day-to-night winds, and further analysis is needed to investigate the implications for atmospheric dynamics. These high signal-to-noise observations provide a benchmark data set for testing high-resolution retrievals and the assumptions of atmospheric models. We also simulate observations of WASP-189 b with ANDES/ELT, and show that ANDES will be highly sensitive to the individual absorption lines of a myriad of elements and molecules, including TiO and CO.more » « less
An official website of the United States government
