skip to main content


Title: A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation
Abstract

Atmospheric escape shapes the fate of exoplanets, with statistical evidence for transformative mass loss imprinted across the mass–radius–insolation distribution. Here, we present transit spectroscopy of the highly irradiated, low-gravity, inflated hot Saturn HAT-P-67 b. The Habitable Zone Planet Finder spectra show a detection of up to 10% absorption depth of the 10833 Å helium triplet. The 13.8 hr of on-sky integration time over 39 nights sample the entire planet orbit, uncovering excess helium absorption preceding the transit by up to 130 planetary radii in a large leading tail. This configuration can be understood as the escaping material overflowing its small Roche lobe and advecting most of the gas into the stellar—and not planetary—rest frame, consistent with the Doppler velocity structure seen in the helium line profiles. The prominent leading tail serves as direct evidence for dayside mass loss with a strong day-/nightside asymmetry. We see some transit-to-transit variability in the line profile, consistent with the interplay of stellar and planetary winds. We employ one-dimensional Parker wind models to estimate the mass-loss rate, finding values on the order of 2 × 1013g s−1, with large uncertainties owing to the unknown X-ray and ultraviolet (XUV) flux of the F host star. The large mass loss in HAT-P-67 b represents a valuable example of an inflated hot Saturn, a class of planets recently identified to be rare, as their atmospheres are predicted to evaporate quickly. We contrast two physical mechanisms for runaway evaporation: ohmic dissipation and XUV irradiation, slightly favoring the latter.

 
more » « less
NSF-PAR ID:
10493488
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
167
Issue:
4
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 142
Size(s):
["Article No. 142"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Early in their lives, planets endure extreme amounts of ionizing radiation from their host stars. For planets with primordial hydrogen and helium-rich envelopes, this can lead to substantial mass loss. Direct observations of atmospheric escape in young planetary systems can help elucidate this critical stage of planetary evolution. In this work, we search for metastable helium absorption—a tracer of tenuous gas in escaping atmospheres—during transits of three planets orbiting the young solar analog V1298 Tau. We characterize the stellar helium line using HET/HPF, and find that it evolves substantially on timescales of days to months. The line is stable on hour-long timescales except for one set of spectra taken during the decay phase of a stellar flare, where absoprtion increased with time. Utilizing a beam-shaping diffuser and a narrowband filter centered on the helium feature, we observe four transits with Palomar/WIRC: two partial transits of planet d ( P = 12.4 days), one partial transit of planet b ( P = 24.1 days), and one full transit of planet c ( P = 8.2 days). We do not detect the transit of planet c, and we find no evidence of excess absorption for planet b, with Δ R b / R ⋆ < 0.019 in our bandpass. We find a tentative absorption signal for planet d with Δ R d / R ⋆ = 0.0205 ± 0.054, but the best-fit model requires a substantial (−100 ± 14 minutes) transit-timing offset on a two-month timescale. Nevertheless, our data suggest that V1298 Tau d may have a high present-day mass-loss rate, making it a priority target for follow-up observations. 
    more » « less
  2. Abstract

    Observations of present-day mass-loss rates for close-in transiting exoplanets provide a crucial check on models of planetary evolution. One common approach is to model the planetary absorption signal during the transit in lines like Hei10830 with an isothermal Parker wind, but this leads to a degeneracy between the assumed outflow temperatureT0and the mass-loss rateṀthat can span orders of magnitude inṀ. In this study, we re-examine the isothermal Parker wind model using an energy-limited framework. We show that in cases where photoionization is the only heat source, there is a physical upper limit to the efficiency parameterεcorresponding to the maximal amount of heating. This allows us to rule out a subset of winds with high temperatures and large mass-loss rates as they do not generate enough heat to remain self-consistent. To demonstrate the utility of this framework, we consider spectrally unresolved metastable helium observations of HAT-P-11b, WASP-69b, and HAT-P-18b. For the former two planets, we find that only relatively weak (Ṁ1011.5g s−1) outflows can match the metastable helium observations while remaining energetically self-consistent, while for HAT-P-18b all of the Parker wind models matching the helium data are self-consistent. Our results are in good agreement with more detailed self-consistent simulations and constraints from high-resolution transit spectra.

     
    more » « less
  3. ABSTRACT

    We report a search for excess absorption in the 1083.2 nm line of ortho (triplet) helium during transits of TOI-1807b and TOI-2076b, 1.25 and 2.5-R⊕ planets on 0.55- and 10.4-d orbits around nearby ∼200 Myr-old K dwarf stars. We limit the equivalent width of any transit-associated absorption to <4 and <8 mÅ, respectively. We limit the escape of solar-composition atmospheres from TOI-1807b and TOI-2076b to ≲1 and ≲0.1M⊕Gyr−1, respectively, depending on wind temperature. The absence of a H/He signature for TOI-1807b is consistent with a measurement of mass indicating a rocky body and the prediction by a hydrodynamic model that any H-dominated atmosphere would be unstable and already have been lost. Differential spectra obtained during the transit of TOI-2076b contain a He i-like feature, but this closely resembles the stellar line and extends beyond the transit interval. Until additional transits are observed, we suspect this to be the result of variation in the stellar He i line produced by rotation of active regions and/or flaring on the young, active host star. Non-detection of escape could mean that TOI-2076b is more massive than expected, the star is less EUV luminous, the models overestimate escape, or the planet has a H/He-poor atmosphere that is primarily molecules such as H2O. Photochemical models of planetary winds predict a semimajor axis at which triplet He i observations are most sensitive to mass-loss: TOI-2076b orbits near this optimum. Future surveys could use a distance criterion to increase the yield of detections.

     
    more » « less
  4. Abstract

    We report the discovery and confirmation of the Transiting Exoplanet Survey Satellite (TESS) single-transit, warm and dense sub-Saturn, TIC 139270665 b. This planet is unusually dense for its size: with a bulk density of 2.13 g cm−3(0.645RJ, 0.463MJ), it is the densest warm sub-Saturn of the TESS family. It orbits a metal-rich G2 star. We also found evidence of a second planet, TIC 139270665 c, with a longer period of1010220+780days and minimum massMPsiniof4.890.37+0.66MJ. First clues of TIC 139270665 b’s existence were found by citizen scientists inspecting TESS photometric data from sector 47 in 2022 January. Radial velocity measurements from the Automated Planet Finder combined with TESS photometry and spectral energy distributions viaEXOFASTv2system modeling suggested a23.6240.031+0.030day orbital period for TIC 139270665 b and also showed evidence for the second planet. Based on this estimated period, we mobilized the Unistellar citizen science network for photometric follow-up, capitalizing on their global distribution to capture a second transit of TIC 139270665 b. This citizen science effort also served as a test bed for an education initiative that integrates young students into modern astrophysics data collection. The Unistellar photometry did not definitively detect a second transit, but did enable us to further constrain the planet’s period. As a transiting, warm, and dense sub-Saturn, TIC 139270665 b represents an interesting laboratory for further study to enhance our models of planetary formation and evolution.

     
    more » « less
  5. Abstract We present the discovery of a new Jovian-sized planet, TOI-3757 b, the lowest-density transiting planet known to orbit an M dwarf (M0V). This planet was discovered around a solar-metallicity M dwarf, using Transiting Exoplanet Survey Satellite photometry and confirmed with precise radial velocities from the Habitable-zone Planet Finder (HPF) and NEID. With a planetary radius of 12.0 − 0.5 + 0.4 R ⊕ and mass of 85.3 − 8.7 + 8.8 M ⊕ , not only does this object add to the small sample of gas giants (∼10) around M dwarfs, but also its low density ( ρ = 0.27 − 0.04 + 0.05 g cm −3 ) provides an opportunity to test theories of planet formation. We present two hypotheses to explain its low density; first, we posit that the low metallicity of its stellar host (∼0.3 dex lower than the median metallicity of M dwarfs hosting gas giants) could have played a role in the delayed formation of a solid core massive enough to initiate runaway accretion. Second, using the eccentricity estimate of 0.14 ± 0.06, we determine it is also plausible for tidal heating to at least partially be responsible for inflating the radius of TOI-3757b b. The low density and large scale height of TOI-3757 b makes it an excellent target for transmission spectroscopy studies of atmospheric escape and composition (transmission spectroscopy measurement of ∼ 190). We use HPF to perform transmission spectroscopy of TOI-3757 b using the helium 10830 Å line. Doing this, we place an upper limit of 6.9% (with 90% confidence) on the maximum depth of the absorption from the metastable transition of He at ∼10830 Å, which can help constraint the atmospheric mass-loss rate in this energy-limited regime. 
    more » « less