skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stingy bots can improve human welfare in experimental sharing networks
Abstract Machines powered by artificial intelligence increasingly permeate social networks with control over resources. However, machine allocation behavior might offer little benefit to human welfare over networks when it ignores the specific network mechanism of social exchange. Here, we perform an online experiment involving simple networks of humans (496 participants in 120 networks) playing a resource-sharing game to which we sometimes add artificial agents (bots). The experiment examines two opposite policies of machine allocation behavior:reciprocal bots, which share all resources reciprocally; andstingy bots, which share no resources at all. We also manipulate the bot’s network position. We show that reciprocal bots make little changes in unequal resource distribution among people. On the other hand, stingy bots balance structural power and improve collective welfare in human groups when placed in a specific network position, although they bestow no wealth on people. Our findings highlight the need to incorporate the human nature of reciprocity and relational interdependence in designing machine behavior in sharing networks. Conscientious machines do not always work for human welfare, depending on the network structure where they interact.  more » « less
Award ID(s):
1942085
PAR ID:
10493567
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machines increasingly decide over the allocation of resources or tasks among people resulting in what we call Machine Allocation Behavior. People respond strongly to how other people or machines allocate resources. However, the implications for human relationships of algorithmic allocations of, for example, tasks among crowd workers, annual bonuses among employees, or a robot’s gaze among members of a group entering a store remains unclear. We leverage a novel research paradigm to study the impact of machine allocation behavior on fairness perceptions, interpersonal perceptions, and individual performance. In a 2 × 3 between-subject design that manipulates how the allocation agent is presented (human vs. artificial intelligent [AI] system) and the allocation type (receiving less vs. equal vs. more resources), we find that group members who receive more resources perceive their counterpart as less dominant when the allocation originates from an AI as opposed to a human. Our findings have implications on our understanding of the impact of machine allocation behavior on interpersonal dynamics and on the way in which we understand human responses towards this type of machine behavior. 
    more » « less
  2. Building community resilience is vital due to climate change and more frequent extreme weather events, which often force people to choose between evacuating or sheltering in place. The prevalence of stay-at-home orders and quarantine practices emerging from the COVID-19 pandemic highlights the need to understand how households access resources when mobility is restricted. This research investigates peer-to-peer resource-exchanging behavior during a shelterin- place response to a flooding event amid the pandemic through an online stated response survey (n=600). Latent class analysis reveals six distinct segments based on respondents’ resource sharing and accepting behaviors. Several household and social context variables help explain these behavioral clusters. Younger individuals and individuals with lower household income are generally more reluctant to accept resources from neighbors, while larger households are more inclined to share essential items. Additionally, social resources, trust in neighbors, and preparedness level can significantly influence individuals’ resource-exchanging behaviors. The findings highlight gaps for governmental agencies and nonprofit organizations to help address, emphasizing the need to ensure sufficient allocation of resources, especially for private items such as backup power sources, communication devices, and shelter, which respondents are least willing to share. This research offers valuable insights for future disaster preparedness programs and resource allocation strategies, aiming to improve community resilience and minimize negative impacts during shelter-in-place responses. 
    more » « less
  3. Abstract—Network slicing is a key capability for next gen- eration mobile networks. It enables infrastructure providers to cost effectively customize logical networks over a shared infrastructure. A critical component of network slicing is resource allocation, which needs to ensure that slices receive the resources needed to support their services while optimizing network effi- ciency. In this paper, we propose a novel approach to slice-based resource allocation named Guaranteed seRvice Efficient nETwork slicing (GREET). The underlying concept is to set up a con- strained resource allocation game, where (i) slices unilaterally optimize their allocations to best meet their (dynamic) customer loads, while (ii) constraints are imposed to guarantee that, if they wish so, slices receive a pre-agreed share of the network resources. The resulting game is a variation of the well-known Fisher mar- ket, where slices are provided a budget to contend for network resources (as in a traditional Fisher market), but (unlike a Fisher market) prices are constrained for some resources to ensure that the pre-agreed guarantees are met for each slice. In this way, GREET combines the advantages of a share-based approach (high efficiency by flexible sharing) and reservation-based ones (which provide guarantees by assigning a fixed amount of resources). We characterize the Nash equilibrium, best response dynamics, and propose a practical slice strategy with provable convergence properties. Extensive simulations exhibit substantial improvements over network slicing state-of-the-art benchmarks. 
    more » « less
  4. This paper focuses on optimizing resource allocation amongst a set of tenants, network slices, supporting dynamic customer loads over a set of distributed resources, e.g., base stations. The aim is to reap the benefits of statistical multiplexing resulting from flexible sharing of ‘pooled’ resources, while enabling tenants to differentiate and protect their performance from one another’s load fluctuations. To that end we consider a setting where resources are grouped into Virtual Resource Pools (VRPs) wherein resource allocation is jointly and dynam- ically managed. Specifically for each VRP we adopt a Share- Constrained Proportionally Fair (SCPF) allocation scheme where each tenant is allocated a fixed share (budget). This budget is to be distributed equally amongst its active customers which in turn are granted fractions of their associated VRP resources in proportion to customer shares. For a VRP with a single resource, this translates to the well known Generalized Processor Sharing (GPS) policy. For VRPs with multiple resources SCPF provides a flexible means to achieve load elastic allocations across tenants sharing the pool. Given tenants’ per resource shares and expected loads, this paper formulates the problem of determining optimal VRP partitions which maximize the overall expected shared weighted utility while ensuring protection guarantees. For a high load/capacity setting we exhibit this network utility function explicitly, quantifying the benefits and penalties of any VRP partition, in terms of network slices’ ability to achieve performance differentiation, load balancing, and statistical multiplexing. Although the problem is shown to be NP-Hard, a simple greedy heuristic is shown to be effective. Analysis and simulations confirm that the selection of optimal VRP partitions provide a practical avenue towards improving network utility in network slicing scenarios with dynamic loads. 
    more » « less
  5. An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises’ service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLAaware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement. 
    more » « less