skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate-invariant machine learning
Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed “climate-invariant” ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes.  more » « less
Award ID(s):
1936810
PAR ID:
10493600
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
6
ISSN:
2375-2548
Page Range / eLocation ID:
eadj7250
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Advances in machine learning (ML) have led to applications in safety‐critical domains, including security, defense, and healthcare. These ML models are confronted with dynamically changing and actively hostile conditions characteristic of real‐world applications, requiring systems incorporating ML to be reliable and resilient. Many studies propose techniques to improve the robustness of ML algorithms. However, fewer consider quantitative techniques to assess changes in the reliability and resilience of these systems over time. To address this gap, this study demonstrates how to collect relevant data during the training and testing of ML suitable for the application of software reliability, with and without covariates, and resilience models and the subsequent interpretation of these analyses. The proposed approach promotes quantitative risk assessment of ML technologies, providing the ability to track and predict degradation and improvement in the ML model performance and assisting ML and system engineers with an objective approach to compare the relative effectiveness of alternative training and testing methods. The approach is illustrated in the context of an image recognition model, which is subjected to two generative adversarial attacks and then iteratively retrained to improve the system's performance. Our results indicate that software reliability models incorporating covariates characterized the misclassification discovery process more accurately than models without covariates. Moreover, the resilience model based on multiple linear regression incorporating interactions between covariates tracks and predicts degradation and recovery of performance best. Thus, software reliability and resilience models offer rigorous quantitative assurance methods for ML‐enabled systems and processes. 
    more » « less
  2. Accurate and computationally-viable representations of clouds and turbulence are a long-standing challenge for climate model development. Traditional parameterizations that crudely but efficiently approximate these processes are a leading source of uncertainty in long-term projected warming and precipitation patterns. Machine Learning (ML)-based parameterizations have long been hailed as a promising alternative with the potential to yield higher accuracy at a fraction of the cost of more explicit simulations. However, these ML variants are often unpredictably unstable and inaccurate in \textit{coupled} testing (i.e. in a downstream hybrid simulation task where they are dynamically interacting with the large-scale climate model). These issues are exacerbated in out-of-distribution climates. Certain design decisions such as ``climate-invariant" feature transformation for moisture inputs, input vector expansion, and temporal history incorporation have been shown to improve coupled performance, but they may be insufficient for coupled out-of-distribution generalization. If feature selection and transformations can inoculate hybrid physics-ML climate models from non-physical, out-of-distribution extrapolation in a changing climate, there is far greater potential in extrapolating from observational data. Otherwise, training on multiple simulated climates becomes an inevitable necessity. While our results show generalization benefits from these design decisions, the obtained improvment does not sufficiently preclude the necessity of using multi-climate simulated training data. 
    more » « less
  3. Accurate representations of unknown and sub-grid physical processes through parameterizations (or closure) in numerical simulations with quantified uncertainty are critical for resolving the coarse-grained partial differential equations that govern many problems ranging from weather and climate prediction to turbulence simulations. Recent advances have seen machine learning (ML) increasingly applied to model these subgrid processes, resulting in the development of hybrid physics-ML models through the integration with numerical solvers. In this work, we introduce a novel framework for the joint estimation and uncertainty quantification of physical parameters and machine learning parameterizations in tandem, leveraging differentiable programming. Achieved through online training and efficient Bayesian inference within a high-dimensional parameter space, this approach is enabled by the capabilities of differentiable programming. This proof of concept underscores the substantial potential of differentiable programming in synergistically combining machine learning with differential equations, thereby enhancing the capabilities of hybrid physics-ML modeling. 
    more » « less
  4. Abstract Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O–SiO2glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training. 
    more » « less
  5. In the past decade, academia and industry have embraced machine learning (ML) for database management system (DBMS) automation. These efforts have focused on designing ML models that predict DBMS behavior to support picking actions (e.g., building indexes) that improve the system's performance. Recent developments in ML have created automated methods for finding good models. Such advances shift the bottleneck from DBMS model design to obtaining the training data necessary for building these models. But generating good training data is challenging and requires encoding subject matter expertise into DBMS instrumentation. Existing methods for training data collection are bespoke to individual DBMS components and do not account for (1) how workload trends affect the system and (2) the subtle interactions between internal system components. Consequently, the models created from this data do not support holistic tuning across subsystems and require frequent retraining to boost their accuracy. This paper presents the architecture of a database gym, an integrated environment that provides a unified API of pluggable components for obtaining high-quality training data. The goal of a database gym is to simplify ML model training and evaluation to accelerate autonomous DBMS research. But unlike gyms in other domains that rely on custom simulators, a database gym uses the DBMS itself to create simulation environments for ML training. Thus, we discuss and prescribe methods for overcoming challenges in DBMS simulation, which include demanding requirements for performance, simulation fidelity, and DBMS-generated hints for guiding training processes. 
    more » « less