skip to main content


Title: Maternal and infant predictors of proinflammatory milk immune activity in Kilimanjaro , Tanzania
Abstract Objectives

The immune system of milk (ISOM) creates a mother–infant immune axis that plays an important role in protecting infants against infectious disease (ID). Tradeoffs in the immune system suggest the potential for both protection and harm, so we conceive of two dimensions via which the ISOM impacts infants: promotion of protective activity and control of activity directed at benign targets. High variability in ISOM activity across mother–infant dyads suggests investment the ISOM may have evolved to be sensitive to maternal and/or infant characteristics. We assessed predictors of appropriate and misdirected proinflammatory ISOM activity in an environment of high ID risk, testing predictions drawn from life history theory and other evolutionary perspectives.

Methods

We characterized milk in vitro interleukin‐6 (IL‐6) responses toSalmonella enterica(a target of protective immune activity;N = 96) andEscherichia coli(a benign target;N = 85) among mother–infant dyads in rural Kilimanjaro, Tanzania. We used ordered logistic regression and mixture models to evaluate maternal and infant characteristics as predictors of IL‐6 responses.

Results

In all models, IL‐6 responses toS.entericaincreased with maternal age and decreased with gravidity. In mixture models, IL‐6 responses toE.colideclined with maternal age and increased with gravidity. No other considered variables were consistently associated with IL‐6 responses.

Conclusions

The ISOM's capacities for appropriate proinflammatory activity and control of misdirected proinflammatory activity increases with maternal age and decreases with gravidity. These findings are consistent with the hypothesis that the mother–infant immune axis has evolved to respond to maternal life history characteristics.

 
more » « less
Award ID(s):
1825534
PAR ID:
10493680
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Human Biology
Volume:
36
Issue:
6
ISSN:
1042-0533
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    Breastfeeding is an energetically costly and intense form of human parental investment, providing sole‐source nutrition in early infancy and bioactive components, including immune factors. Given the energetic cost of lactation, milk factors may be subject to tradeoffs, and variation in concentrations have been explored utilizing the Trivers‐Willard hypothesis. As human milk immune factors are critical to developing immune system and protect infants against pathogens, we tested whether concentrations of milk immune factors (IgA, IgM, IgG, EGF, TGFβ2, and IL‐10) vary in response to infant sex and maternal condition (proxied by maternal diet diversity [DD] and body mass index [BMI]) as posited in the Trivers‐Willard hypothesis and consider the application of the hypothesis to milk composition.

    Methods

    We analyzed concentrations of immune factors in 358 milk samples collected from women residing in 10 international sites using linear mixed‐effects models to test for an interaction between maternal condition, including population as a random effect and infant age and maternal age as fixed effects.

    Results

    IgG concentrations were significantly lower in milk produced by women consuming diets with low diversity with male infants than those with female infants. No other significant associations were identified.

    Conclusions

    IgG concentrations were related to infant sex and maternal diet diversity, providing minimal support for the hypothesis. Given the lack of associations across other select immune factors, results suggest that the Trivers‐Willard hypothesis may not be broadly applied to human milk immune factors as a measure of maternal investment, which are likely buffered against perturbations in maternal condition.

     
    more » « less
  2. Abstract Objectives

    Folate is an essential nutrient fundamental to human growth and development. Human milk maintains high folate content across the maternal folate status range, suggesting buffering of milk folate with prioritized delivery to milk at the expense of maternal depletion. We investigated whether and how the extent of this buffering may diminish under prolonged nutritional and/or disease stress, while taking into consideration infants' varying vulnerability to malnutrition‐related morbidity/mortality.

    Methods

    A cross‐sectional study analyzed milk specimens from northern Kenyan mothers (n = 203), surveyed during a historic drought and ensuing food shortage. Multiple regression models for folate receptor‐α (FOLR1) in milk were constructed. Predictors included maternal underweight (BMI < 18.5), iron‐deficiency anemia (hemoglobin <12 g/dl and dried‐blood‐spot transferrin receptor >5 mg/L), folate deficiency (hyperhomocysteinemia, homocysteine >12 or 14 μmol/L), inflammation (serum C‐reactive protein >5 mg/L), infant age and sex, and mother‐infant interactions.

    Results

    In adjusted models, milk FOLR1 was unassociated with maternal underweight, iron‐deficiency anemia and inflammation. FOLR1 was positively associated with maternal folate deficiency, and inversely associated with infant age. There was interaction between infant age and maternal underweight, and between infant sex and maternal folate deficiency, predicting complex changes in FOLR1.

    Conclusions

    Our results suggest that mothers buffer milk folate against their own nutritional stress even during a prolonged drought; however, the extent of this buffering may vary with infant age, and, among folate‐deficient mothers, with infant sex. Future research is needed to better understand this variability in maternal buffering of milk folate and how it relates to folate status in nursing infants.

     
    more » « less
  3. Abstract Objectives

    In humans and other mammals, maternal hormones are transferred to offspring during lactation via milk and may regulate postnatal development, including the pace of early growth. Here, we used a nonhuman primate model to test the hypotheses that milk cortisol and dehydroepiandrosterone‐sulfate (DHEAS) concentrations reflect maternal characteristics, and that changes in these hormones across lactation are associated with early postnatal growth rates.

    Methods

    Demographic information, morphometrics, and milk samples were collected from rhesus macaque mothers and their infants at the California National Primate Research Center in Davis, California. Using linear models, we examined the relationship between maternal traits and milk hormone concentrations (N = 104 females) and explored the effect of milk hormones on the rate of offspring growth (N = 72 mother‐infant dyads), controlling for available milk energy.

    Results

    Contrary to previous studies, we found that milk cortisol concentrations were categorically higher in multiparous females than in primiparous females. However, milk DHEAS concentrations decreased with maternal parity. Neither milk cortisol nor DHEAS were related to maternal rank. Finally, changes in milk hormones predicted offspring growth in a sex‐specific and temporal manner: increases in cortisol from peak to late lactation predicted faster female growth, and increases in DHEAS concentrations from early to peak and peak to late lactation predicted faster male growth.

    Conclusions

    Our findings shed light on how hormonal components of milk have sex‐specific effects on offspring growth during early postnatal life with varying temporal windows of sensitivity.

     
    more » « less
  4. Abstract Background

    Maternal anemia has adverse consequences for the mother‐infant dyad. To evaluate whether and how milk nutrient content may change in ways that could “buffer” infants against the conditions underlying maternal anemia, this study assessed associations between milk macronutrients and maternal iron‐deficiency anemia (IDA), non‐iron‐deficiency anemia (NIDA), and inflammation.

    Methods

    A secondary analysis of cross‐sectional data and milk from northern Kenya was conducted (n = 204). The combination of hemoglobin and transferrin receptor defined IDA/NIDA. Elevated serum C‐reactive protein defined acute inflammation. The effects of IDA, NIDA, and inflammation on milk macronutrients were evaluated in regression models.

    Results

    IDA (β = 0.077,p =.022) and NIDA (β = 0.083,p =.100) predicted higher total protein (ln). IDA (β = −0.293,p =.002), NIDA (β = −0.313,p =.047), and inflammation (β = −0.269,p =.007) each predicted lower fat (ln); however, anemia accompanying inflammation predictedhigherfat (β = 0.655,p =.007 for IDA and β = 0.468,p =.092 for NIDA). NIDA predicted higher lactose (β = 1.020,p =.003).

    Conclusions

    Milk macronutrient content both increases and decreases in the presence of maternal anemia and inflammation, suggesting a more complicated and dynamic change than simple impairment of nutrient delivery during maternal stress. Maternal fat delivery to milk may be impaired under anemia. Mothers may buffer infant nutrition against adverse conditions or poor maternal health by elevating milk protein (mothers with IDA/NIDA), lactose (mothers with NIDA), or fat (mothers with anemiaandinflammation). This study demonstrates the foundational importance of maternal micronutrient health and inflammation or infection for advancing the ecological understanding of human milk nutrient variation.

     
    more » « less
  5. Abstract  
    more » « less