Gilbert, Wendy V
                            (Ed.)
                        
                    
            
                            The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal’s surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds topqm-1mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of bothpqm-1and downstream PQM-1 activated genes. Interestingly, we find that neuralpqm-1expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe inadrmutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism inCaenorhabditis elegansthat allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    