The ozone air quality standard is regularly surpassed in the Los Angeles air basin, and efforts to mitigate ozone production have targeted emissions of precursor volatile organic compounds (VOCs), especially from mobile sources. In order to assess how VOC concentrations, emissions, and chemistry have changed over the past decade, VOCs were measured in this study using a Vocus‐2R proton‐transfer reaction time‐of‐flight mass spectrometer in Pasadena, California, downwind of Los Angeles, in summer 2022. Relative to 2010, ambient concentrations of aromatic hydrocarbons have declined at a similar rate as carbon monoxide, suggesting reduced overall emissions from mobile sources. However, the ambient concentrations of oxygenated VOCs have remained similar or increased, suggesting a greater relative importance of oxidation products and other emission sources, such as volatile chemical products whose emissions are largely unregulated. Relative to 2010, the range of measured VOCs was expanded, including higher aromatics and additional volatile chemical products, allowing a better understanding of a wider range of emission sources. Emission ratios relative to carbon monoxide were estimated and compared with 2010 emission ratios. Average measured ozone concentrations were generally comparable between 2022 and 2010; however, at the same temperature, daytime ozone concentrations were lower in 2022 than 2010. Faster photochemistry was observed in 2022, with average hydroxyl radical exposure being ∼68% higher during midday (statistically significant at 95% confidence), although this difference reduces to ∼35% when comparing observations at ambient temperatures of 25–30°C only. Future trends in temperature are important in predicting ozone production.
more »
« less
Ammonium adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air
Volatile chemical products (VCPs) and other non-combustion-related sourceshave become important for urban air quality, and bottom-up calculationsreport emissions of a variety of functionalized compounds that remainunderstudied and uncertain in emissions estimates. Using a new instrumentalconfiguration, we present online measurements of oxygenated organiccompounds in a US megacity over a 10 d wintertime sampling period, whenbiogenic sources and photochemistry were less active. Measurements wereconducted at a rooftop observatory in upper Manhattan, New York City, USAusing a Vocus chemical ionization time-of-flight mass spectrometer, withammonium (NH4+) as the reagent ion operating at 1 Hz. The range ofobservations spanned volatile, intermediate-volatility, and semi-volatileorganic compounds, with targeted analyses of ∼150 ions, whoselikely assignments included a range of functionalized compound classes suchas glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters,ethanolamines, and ketones that are found in various consumer, commercial,and industrial products. Their concentrations varied as a function of winddirection, with enhancements over the highly populated areas of the Bronx,Manhattan, and parts of New Jersey, and included abundant concentrations ofacetates, acrylates, ethylene glycol, and other commonly used oxygenatedcompounds. The results provide top-down constraints on wintertime emissionsof these oxygenated and functionalized compounds, with ratios to commonanthropogenic marker compounds and comparisons of their relative abundancesto two regionally resolved emissions inventories used in urban air qualitymodels.
more »
« less
- PAR ID:
- 10493758
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 22
- Issue:
- 21
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 14377 to 14399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) model with a high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time, on-road information and recent emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCPs). Meteorology is well predicted compared to ground-based observations, and the emission rates from multiple sources (i.e., on-road, volatile chemical products, area, point, biogenic, and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well predicted despite inaccuracies in nitrogen oxide (NOx) predictions. Particle matter (PM) is underpredicted compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in Pasadena. Inorganic aerosol is well predicted, while SOA is underpredicted. Modeled SOA consists of mostly organic nitrates and products from oxidation of alkane-like intermediate volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated (VOC-sensitive), with the largest sensitivity of O3 to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study.more » « less
-
Science for Society Buildings account for a significant fraction of the land area in cities and actively exchange air with their proximate outdoor environments via mechanical ventilation systems. However, the direct impact of buildings on urban air pollution remains poorly characterized. Due to reductions in traffic-associated emissions of volatile organic compounds (VOCs), volatile chemical products, which are widely used inside buildings, have become a major VOC source in urban areas. Indoor-generated VOCs are likely to be an important contributor to the VOC burden of the urban atmosphere, and ventilation systems provide a pathway for VOCs to be released outdoors. Here, we show how modern buildings act as significant emission sources of VOCs for the outdoor environment. Our results demonstrate that future air quality monitoring efforts in cities need to account for direct VOC discharge from buildings in order to capture emerging sources of environmental pollution that can impact the climate and human health. Summary Urban air undergoes transformations as it is actively circulated throughout buildings via ventilation systems. However, the influence of air exchange between outdoor and indoor atmospheres on urban air pollution is not well understood. Here, we quantify how buildings behave as a dynamic source and sink for urban air pollutants via high-resolution online mass spectrometry measurements. During our field campaign in a high-performance office building, we observed that the building continually released volatile organic compounds (VOCs) into the urban air and removed outdoor ozone and fine particulate matter. VOC emissions from people, their activities, and surface reservoirs result in significant VOC discharge from the building to the outdoors. Per unit area, building emissions of VOCs are comparable to traffic, industrial, and biogenic emissions. The building source-sink behavior changed dynamically with occupancy and ventilation conditions. Our results demonstrate that buildings can directly influence urban air quality due to substantial outdoor-indoor air exchange.more » « less
-
Abstract Total OH reactivity was measured during the California Research at the Nexus of Air Quality and Climate Change field campaign at the Pasadena ground site using a turbulent flow tube reactor with laser‐induced fluorescence detection of the OH radical. Collocated measurements of volatile organic compounds (VOCs), inorganic species, and meteorological parameters were made and used to calculate the total OH reactivity, which was then compared to the measured values. An analysis of the OH reactivity measurements finds that although the measured reactivity correlated well with the calculated reactivity, the measurements were consistently greater than the calculations for all times during the day, with an average missing OH reactivity of 8–10 s−1, accounting for approximately 40% of the measured total OH reactivity. An analysis of correlations with both anthropogenic tracers of combustion and oxygenated VOCs as well as air trajectories during the campaign suggest that the missing OH reactivity was likely due to a combination of both unmeasured local emissions and unmeasured oxidation products transported to the site. Approximately 50% of the missing OH reactivity may have been due to emissions of unmeasured volatile chemical products, such as pesticides, cleaning agents, and personal care products.more » « less
-
We investigate the gas-phase photo-oxidation of 2-ethoxyethanol (2-EE) initiated by the OH radical with a focus on its autoxidation pathways. Gas-phase autoxidation intramolecular H-shifts followed by O2 additionhas recently been recognized as a major atmospheric chemical pathway that leads to the formation of highly oxygenated organic molecules (HOMs), which are important precursors for secondary organic aerosols (SOAs). Here, we examine the gas-phase oxidation pathways of 2-EE, a model compound for glycol ethers, an important class of volatile organic compounds (VOCs) used in volatile chemical products (VCPs). Both experimental and computational techniques are applied to analyze the photochemistry of the compound. We identify oxidation products from both bimolecular and autoxidation reactions from chamber experiments at varied HO2 levels and provide estimations of rate coefficients and product branching ratios for key reaction pathways. The H-shift processes of 2-EE peroxy radicals (RO2) are found to be sufficiently fast to compete with bimolecular reactions under modest NO/HO2 conditions. More than 30% of the produced RO2 are expected to undergo at least one H-shift for conditions typical of modern summer urban atmosphere, where RO2 bimolecular lifetime is becoming >10 s, which implies the potential for glycol ether oxidation to produce considerable amounts of HOMs at reduced NOx levels and elevated temperature. Understanding the gas-phase autoxidation of glycol ethers can help fill the knowledge gap in the formation of SOA derived from oxygenated VOCs emitted from VCP sources.more » « less